Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Zootaxa ; 4588(1): zootaxa.4588.1.1, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31716112

ABSTRACT

A checklist of the marine and estuarine fishes of New Ireland Province is presented, with special emphasis on Kavieng District, combining both previous and new records. After the recent KAVIENG 2014 expedition, a total of 1325 species in 153 families were recorded from the region. The largest families are the Gobiidae, Pomacentridae, Labridae, Serranidae, Apogonidae, Lutjanidae, Chaetodontidae, Blenniidae, Carangidae, Acanthuridae, Scaridae, Holocentridae, Syn-gnathidae, Lethrinidae and Scorpaenidae. A total of 810 fish species (61.1 % of the total marine and estuarine fish fauna) are recorded from New Ireland for the first time.The fish fauna of New Ireland includes 142 species in transitional waters and 1264 species in marine habitats, and 54 species species in freshwater habitats. Zoogeographically, 1179 species have a wide distribution range, most frequently a broad Indo-West Pacific distribution. Among the remaining species, just 12 are endemic to New Ireland.


Subject(s)
Perciformes , Animals , Ecosystem , Pacific Ocean , Papua New Guinea
2.
Ambio ; 48(4): 374-384, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30014434

ABSTRACT

A thorough understanding of livelihoods is necessary to ensure development policies are compatible with both resource conservation and the social and economic goals of development. Few studies, however, focus on value-adding activities occurring post-harvest in artisanal fisheries. The transformation of mollusc shells and skeletal remains of other marine taxa into artistic jewellery and decorative items is becoming an increasingly important livelihood activity for rural, coastal communities across the Pacific. We examine the potential challenges facing the shell-based handicraft sector and opportunities for overcoming these challenges using a quantitative study of artisans among the Tigak Islands of Papua New Guinea. The major challenges facing this livelihood sector are perceptions of marine resource declines and a lack of livelihood flexibility, attributed to the specialisation of material assets and skills. Improving market heterogeneity and developing coastal aquaculture may facilitate sustainable development of this livelihood sector.


Subject(s)
Conservation of Natural Resources , Fisheries , Aquaculture , Humans , Papua New Guinea , Rural Population
3.
Environ Manage ; 61(4): 661-670, 2018 04.
Article in English | MEDLINE | ID: mdl-29445899

ABSTRACT

A major difficulty in managing live organism wildlife trade is often the reliance on trade data to monitor exploitation of wild populations. Harvested organisms that die or are discarded before a point of sale are regularly not reported. For the global marine aquarium trade, identifying supply-chain losses is necessary to more accurately assess exploitation from trade data. We examined quality control rejections and mortality of marine invertebrates (Asteroidea, Gastropoda, Malacostraca, Ophiuroidea) moving through the Papua New Guinea marine aquarium supply-chain, from fisher to importer. Utilizing catch invoices and exporter mortality records we determined that, over a 160 day period, 38.6% of the total invertebrate catch (n = 13,299 individuals) was lost before export. Supply-chain losses were divided among invertebrates rejected in the quality control process (11.5%) and mortality of the accepted catch in transit to, and during holding at, an export facility (30.6%). A further 0.3% died during international transit to importers. We quantified supply-chain losses for the ten most fished species which accounted for 96.4% of the catch. Quality control rejections (n = 1533) were primarily explained by rejections of oversized invertebrates (83.2% of rejections). We suggest that enforceable size limits on species prone to size-based rejections and elimination of village-based holding of invertebrates would reduce losses along the Papua New Guinea supply-chain. This case study underscores that low mortality during international transit may mask large losses along supply-chains prior to export and exemplifies the limitations of trade data to accurately monitor exploitation.


Subject(s)
Aquatic Organisms , Commerce , Environmental Monitoring/methods , Fisheries , Fishes , Animals , Marine Biology , Papua New Guinea
4.
PLoS One ; 11(3): e0151624, 2016.
Article in English | MEDLINE | ID: mdl-26963259

ABSTRACT

A major difficulty in managing wildlife trade is the reliance on trade data (rather than capture data) to monitor exploitation of wild populations. Collected organisms that die or are rejected before a point of sale often go unreported. For the global marine aquarium trade, identifying the loss of collected fish from rejection, prior to export, is a first step in assessing true collection levels. This study takes a detailed look at fish rejections by buyers before export using the Papua New Guinea marine aquarium fishery as a case study. Utilizing collection invoices detailing the species and quantity of fish (Actinopteri and Elasmobranchii) accepted or rejected by the exporting company it was determined that, over a six month period, 24.2% of the total fish catch reported (n = 13,886) was rejected. Of the ten most collected fish families, rejection frequency was highest for the Apogonidae (54.2%), Chaetodontidae (26.3%), and Acanthuridae (18.2%) and lowest for Labridae (6.6%) and Hemiscylliidae (0.7%). The most frequently cited reasons for rejection were fin damage (45.6% of cases), undersized fish (21.8%), and fish deemed too thin (11.1%). Despite fishers receiving feedback on invoices explaining rejections, there was no improvement in rejection frequencies over time (r = -0.33, P = 0.15) with weekly rejection frequencies being highly inconsistent (range: 2.8% to 79.4%; s = 16.3%). These findings suggest that export/import statistics can greatly underestimate collection for the marine aquarium trade as additional factors such as fisher discards, escapees, post-collection mortalities, and unregulated domestic trade would further contribute to this disparity.


Subject(s)
Fisheries/methods , Fishes/growth & development , Animals , Papua New Guinea
5.
Glob Chang Biol ; 20(4): 1055-66, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24281840

ABSTRACT

Equatorial populations of marine species are predicted to be most impacted by global warming because they could be adapted to a narrow range of temperatures in their local environment. We investigated the thermal range at which aerobic metabolic performance is optimum in equatorial populations of coral reef fish in northern Papua New Guinea. Four species of damselfishes and two species of cardinal fishes were held for 14 days at 29, 31, 33, and 34 °C, which incorporated their existing thermal range (29-31 °C) as well as projected increases in ocean surface temperatures of up to 3 °C by the end of this century. Resting and maximum oxygen consumption rates were measured for each species at each temperature and used to calculate the thermal reaction norm of aerobic scope. Our results indicate that one of the six species, Chromis atripectoralis, is already living above its thermal optimum of 29 °C. The other five species appeared to be living close to their thermal optima (ca. 31 °C). Aerobic scope was significantly reduced in all species, and approached zero for two species at 3 °C above current-day temperatures. One species was unable to survive even short-term exposure to 34 °C. Our results indicate that low-latitude reef fish populations are living close to their thermal optima and may be more sensitive to ocean warming than higher-latitude populations. Even relatively small temperature increases (2-3 °C) could result in population declines and potentially redistribution of equatorial species to higher latitudes if adaptation cannot keep pace.


Subject(s)
Fishes/metabolism , Aerobiosis , Animals , Coral Reefs , Oceans and Seas , Oxygen/metabolism , Papua New Guinea , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...