Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 150(3): 2245, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34598598

ABSTRACT

The description of underwater soundscape is central to the understanding of the marine environment, both from the standpoint of the fauna and anthropic activities and its interactions with the atmosphere. Some of these sources produce signals whose patterns are periodically repeated over time (i.e., ship propellers in motion, odontocetes clicks, snapping shrimp, noise emanating from surface waves, etc.). As ocean noise is a combination of various sources sometimes sharing the same frequency band, it is necessary to develop efficient algorithms to process the increasingly voluminous data acquired. To this end, the theory of cyclostationarity is adopted as an effective tool for exposing hidden periodicities in low signal to noise ratio. This theory, widely used to analyze mechanical systems or communications, is extended and applied on underwater soundscapes. The method is demonstrated using data recorded in the Celtic Sea at the French coast of Brittany with practical experiments using field measurements obtained from recording stations.

2.
J Acoust Soc Am ; 149(6): 4061, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34241421

ABSTRACT

This article presents the study of a passive acoustic dataset recorded on the Chukchi Shelf from October 2016 to July 2017 during the Canada Basin Acoustic Propagation Experiment (CANAPE). The study focuses on the low-frequency (250-350 Hz) ambient noise (after individual transient signals are removed) and its environmental drivers. A specificity of the experimental area is the Beaufort Duct, a persistent warm layer intrusion of variable extent created by climate change, which favors long-range acoustic propagation. The Chukchi Shelf ambient noise shows traditional polar features: it is quieter and wind force influence is reduced when the sea is ice-covered. However, the study reveals two other striking features. First, if the experimental area is covered with ice, the ambient noise drops by up to 10 dB/Hz when the Beaufort Duct disappears. Further, a large part of the noise variability is driven by distant cryogenic events, hundreds of kilometers away from the acoustic receivers. This was quantified using correlations between the CANAPE acoustic data and distant ice-drift magnitude data (National Snow and Ice Data Center).

3.
Mar Pollut Bull ; 124(1): 535-546, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28755811

ABSTRACT

The management of underwater noise within the European Union's waters is a significant component (Descriptor 11) of the Marine Strategy Framework Directive (MSFD). The indicator related to continuous noise, is the noise levels in two one-third octave bands centered at 63Hz and 125Hz. This paper presents an analysis of underwater noise in the Celtic Sea, a heavy shipping area which also hosts the seasonal Ushant thermal front. In addition to the MSFD recommended frequency bands, the analysis was extended to lower and upper frequency bands. Temporal and spatial variations as well as the influence of the properties of the water column on the noise levels were assessed. The noise levels in the area had a high dynamic range and generally exceeded 100dB re 1µPa. Finally, the results highlighted that oceanic mooring must be designed to minimize the pseudo-noise and consider the water column physical properties.


Subject(s)
Noise , Ships , Atlantic Ocean , Environmental Monitoring , Spatio-Temporal Analysis
4.
J Acoust Soc Am ; 138(4): 2034-45, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520287

ABSTRACT

A 13-month time series of Arctic Ocean noise from the marginal ice zone of the Eastern Beaufort Sea is analyzed to detect under-ice acoustic transients isolated from ambient noise with a dedicated algorithm. Noise transients due to ice cracking, fracturing, shearing, and ridging are sorted out into three categories: broadband impulses, frequency modulated (FM) tones, and high-frequency broadband noise. Their temporal and acoustic characteristics over the 8-month ice covered period, from November 2005 to mid-June 2006, are presented and their generation mechanisms are discussed. Correlations analyses showed that the occurrence of these ice transients responded to large-scale ice motion and deformation rates forced by meteorological events, often leading to opening of large-scale leads at main discontinuities in the ice cover. Such a sequence, resulting in the opening of a large lead, hundreds by tens of kilometers in size, along the margin of landfast ice and multiyear ice plume in the Beaufort-Chukchi seas is detailed. These ice transients largely contribute to the soundscape properties of the Arctic Ocean, for both its ambient and total noise components. Some FM tonal transients can be confounded with marine mammal songs, especially when they are repeated, with periods similar to wind generated waves.

5.
J Acoust Soc Am ; 138(3): EL299-304, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26428830

ABSTRACT

Considering a broadband motionless source in a waveguide with a depth that varies with time, the time-frequency representation of the acoustic intensity shows a striation pattern than can be explained using the depth-frequency waveguide invariant. This phenomenon is used here to describe acoustic data recorded in the Iroise Sea, where intense tides occur. The originality of this study is that the acoustic data consist of only ambient noise. The best hypothesis is that these striations are created by distant marine traffic in the Bay of Brest, and the results suggest that tide height can be monitored using long-term passive acoustics.

6.
J Acoust Soc Am ; 134(1): 77-87, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23862786

ABSTRACT

This paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band. Under-ice ambient noise did not respond to thermal changes, but showed consistent correlations with large-scale regional ice drift, wind speed, and measured currents in upper water column. The correlation of ambient noise with ice drift peaked for locations at ranges of ~300 km off the mouth of the Amundsen Gulf. These locations are within the multi-year ice plume that extends westerly along the coast in the Eastern Beaufort Sea due to the large Beaufort Gyre circulation. These results reveal that ambient noise in Eastern Beaufort Sea in winter is mainly controlled by the same meteorological and oceanographic forcing processes that drive the ice drift and the large-scale circulation in this part of the Arctic Ocean.

SELECTION OF CITATIONS
SEARCH DETAIL
...