Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(7): 070602, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31491101

ABSTRACT

Continuous-time random walks offer powerful coarse-grained descriptions of transport processes. We here microscopically derive such a model for a Brownian particle diffusing in a deep periodic potential. We determine both the waiting-time and the jump-length distributions in terms of the parameters of the system, from which we analytically deduce the non-Gaussian characteristic function. We apply this continuous-time random walk model to characterize the underdamped diffusion of single cesium atoms in a one-dimensional optical lattice. We observe excellent agreement between experimental and theoretical characteristic functions, without any free parameter.

2.
Phys Rev Lett ; 118(26): 263401, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28707941

ABSTRACT

We report on the experimental investigation of individual Cs atoms impinging on a dilute cloud of ultracold Rb atoms with variable density. We study the relaxation of the initial nonthermal state and detect the effect of single collisions which has so far eluded observation. We show that, after few collisions, the measured spatial distribution of the tracer atoms is correctly described by a Langevin equation with a velocity-dependent friction coefficient, over a large range of Knudsen numbers. Our results extend the simple and effective Langevin treatment to the realm of light particles in dilute gases. The experimental technique developed opens up the microscopic exploration of a novel regime of diffusion at the level of individual collisions.

3.
Phys Rev E ; 96(1-1): 012130, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29347186

ABSTRACT

We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.

4.
Phys Rev Lett ; 109(23): 235301, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368215

ABSTRACT

We report on controlled doping of an ultracold Rb gas with single neutral Cs impurity atoms. Elastic two-body collisions lead to a rapid thermalization of the impurity inside the Rb gas, representing the first realization of an ultracold gas doped with a precisely known number of impurity atoms interacting via s-wave collisions. Inelastic interactions are restricted to a single three-body recombination channel in a highly controlled and pure setting, which allows us to determine the Rb-Rb-Cs three-body loss rate with unprecedented precision. Our results pave the way for a coherently interacting hybrid system of individually controllable impurities in a quantum many-body system.

SELECTION OF CITATIONS
SEARCH DETAIL
...