Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(45): 16072-16076, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32469352

ABSTRACT

We report the first application of a rigid P2N3 pincer ligand in p-block chemistry by preparing its bismuth complex. We also report the first example of bismuth complexes featuring a flexible PNP pincer ligand, which shows phase-dependent structural dynamics. Highly electrophilic, albeit thermally unstable, Bi(iii) complexes of the PNP ligand were also prepared.

2.
Chemistry ; 25(71): 16414-16424, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31574185

ABSTRACT

The use of pincer ligands to access non-VSEPR geometries at main-group centers is an emerging strategy for eliciting new stoichiometric and catalytic reactivity. As part of this effort, several different tridentate trianionic substituents have to date been employed at a range of different central elements, providing a patchwork dataset that precludes rigorous structure-function correlation. An analysis of periodic trends in structure (solid, solution, and computation), bonding, and reactivity based on systematic variation of the central element (P, As, Sb, or Bi) with retention of a single tridentate triamide substituent is reported herein. In this homologous series, the central element can adopt either a bent or planar geometry. The tendency to adopt planar geometries increases descending the group with the phosphorus triamide (1) and its arsenic congener (2) exhibiting bent conformations, and the antimony (3) and bismuth (4) analogues exhibiting a predominantly planar structure in solution. This trend has been rationalized using an energy decomposition analysis. A rare phase-dependent dynamic covalent dimerization was observed for 3 and the associated thermodynamic parameters were established quantitatively. Planar geometries were found to engender lower LUMO energies and smaller band gaps than bent ones, resulting in different reactivity patterns. These results provide a benchmark dataset to guide further research in this rapidly emerging area.

3.
Angew Chem Int Ed Engl ; 58(23): 7850-7855, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-30945403

ABSTRACT

Reaction of a tethered triamine ligand with Bi(NMe2 )3 gives a Bi triamide, for which a BiI electronic structure is shown to be most appropriate. The T-shaped geometry at bismuth provides the first structural model for edge inversion in bismuthines and the only example of a planar geometry for pnictogen triamides. Analogous phosphorus compounds exhibit a distorted pyramidal geometry because of different Bi-N and P-N bond polarities. Although considerable BiI character is indicated for the title Bi triamide, it exhibits reactivity similar to BiIII electrophiles, and expresses either a vacant or a filled p orbital at Bi, as evidenced by coordination of either pyridine N-oxide or W(CO)5 . The product of the former shows evidence of coordination-induced oxidation state change at bismuth.

SELECTION OF CITATIONS
SEARCH DETAIL
...