Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30010208

ABSTRACT

The habitat template concept applied to a freshwater system indicates that lotic species, or those which occupy permanent habitats along stream courses, are less dispersive than lentic species, or those that occur in more ephemeral aquatic habitats. Thus, populations of lotic species will be more structured than those of lentic species. Stream courses include both flowing water and small, stagnant microhabitats that can provide refuge when streams are low. Many species occur in these microhabitats but remain poorly studied. Here, we present population genetic data for one such species, the tropical diving beetle Exocelina manokwariensis (Dytiscidae), sampled from six localities along a ~300 km transect across the Birds Head Peninsula of New Guinea. Molecular data from both mitochondrial (CO1 sequences) and nuclear (ddRAD loci) regions document fine-scale population structure across populations that are ~45 km apart. Our results are concordant with previous phylogenetic and macroecological studies that applied the habitat template concept to aquatic systems. This study also illustrates that these diverse but mostly overlooked microhabitats are promising study systems in freshwater ecology and evolutionary biology. With the advent of next-generation sequencing, fine-scale population genomic studies are feasible for small nonmodel organisms to help illuminate the effect of habitat stability on species' natural history, population structure and geographic distribution.

2.
Mol Ecol ; 27(17): 3541-3554, 2018 09.
Article in English | MEDLINE | ID: mdl-30030868

ABSTRACT

Recent theoretical advances have hypothesized a central role of habitat persistence on population genetic structure and resulting biodiversity patterns of freshwater organisms. Here, we address the hypothesis that lotic species, or lineages adapted to comparably geologically stable running water habitats (streams and their marginal habitats), have high levels of endemicity and phylogeographic structure due to the persistent nature of their habitat. We use a nextRAD DNA sequencing approach to investigate the population structure and phylogeography of a putatively widespread New Guinean species of diving beetle, Philaccolilus ameliae (Dytiscidae). We find that P. ameliae is a complex of morphologically cryptic, but geographically and genetically well-differentiated clades. The pattern of population connectivity is consistent with theoretical predictions associated with stable lotic habitats. However, in two clades, we find a more complex pattern of low population differentiation, revealing dispersal across rugged mountains and watersheds of New Guinea up to 430 km apart. These results, while surprising, were also consistent with the original formulation of the habitat template concept by Southwood, involving lineage-idiosyncratic evolution in response to abiotic factors. In our system, low population differentiation might reflect a young species in a phase of range expansion utilizing vast available habitat. We suggest that predictions of life history variation resulting from the dichotomy between lotic and lentic organisms require more attention to habitat characterization and microhabitat choice. Our results also underpin the necessity to study fine-scale processes but at a larger geographical scale, as compared to solely documenting macroecological patterns, to understand ecological drivers of regional biodiversity. Comprehensive sampling especially of tropical lineages in complex and threatened environments such as New Guinea remains a critical challenge.


Subject(s)
Coleoptera/classification , Ecosystem , Genetics, Population , Water Movements , Animals , Biodiversity , New Guinea , Phylogeny , Phylogeography , Rivers , Tropical Climate
3.
Sci Rep ; 8(1): 1821, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29379101

ABSTRACT

Extra-Mediterranean glacial refugia of thermophilic biota, in particular in northern latitudes, are controversial. In the present study we provide genetic evidence for extra-Mediterranean refugia in two species of grass snake. The refuge of a widely distributed western European lineage of the barred grass snake (Natrix helvetica) was most likely located in southern France, outside the classical refuges in the southern European peninsulas. One genetic lineage of the common grass snake (N. natrix), distributed in Scandinavia, Central Europe and the Balkan Peninsula, had two distinct glacial refuges. We show that one was located in the southern Balkan Peninsula. However, Central Europe and Scandinavia were not colonized from there, but from a second refuge in Central Europe. This refuge was located in between the northern ice sheet and the Alpine glaciers of the last glaciation and most likely in a permafrost region. Another co-distributed genetic lineage of N. natrix, now massively hybridizing with the aforementioned lineage, survived the last glaciation in a structured refuge in the southern Balkan Peninsula, according to the idea of 'refugia-within-refugia'. It reached Central Europe only very recently. This study reports for the first time the glacial survival of a thermophilic egg-laying reptile species in Central Europe.


Subject(s)
Colubridae/growth & development , Animals , Europe , Genetic Variation/genetics , Haplotypes , Ice Cover , Phylogeny , Phylogeography , Refugium
4.
Sci Rep ; 7(1): 7378, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785033

ABSTRACT

Recent studies found major conflicts between traditional taxonomy and genetic differentiation of grass snakes and identified previously unknown secondary contact zones. Until now, little is known about gene flow across these contact zones. Using two mitochondrial markers and 13 microsatellite loci, we examined two contact zones. One, largely corresponding to the Rhine region, involves the western subspecies Natrix natrix helvetica and the eastern subspecies N. n. natrix, whereas in the other, more easterly, contact zone two lineages meet that are currently identified with N. n. natrix and N. n. persa. This second contact zone runs across Central Europe to the southern Balkans. Our analyses reveal that the western contact zone is narrow, with parapatrically distributed mitochondrial lineages and limited, largely unidirectional nuclear gene flow. In contrast, the eastern contact zone is very wide, with massive nuclear admixture and broadly overlapping mitochondrial lineages. In combination with additional lines of evidence (morphology, phylogeny, divergence times), we conclude that these differences reflect different stages in the speciation process and that Natrix helvetica should be regarded as a distinct species. We suggest a nomenclatural framework for presently recognized grass snake taxa and highlight the need for reconciling the conflicts between genetics and taxonomy.


Subject(s)
Hybridization, Genetic , Snakes/classification , Snakes/genetics , Animals , DNA, Mitochondrial , Europe , Geography , Haplotypes , Microsatellite Repeats , Phylogeny , Population Dynamics , Sequence Analysis, DNA
5.
Zootaxa ; 3795: 501-22, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24870495

ABSTRACT

Recent research has shown that the helmeted terrapin (Pelomedusa subrufa), a species that occurs throughout sub-Saharan Africa, in Madagascar and the southwestern Arabian Peninsula, consists of several deeply divergent genetic lineages. Here we examine all nominal taxa currently synonymized with Pelomedusa subrufa (Bonnaterre, 1789) and provide mitochondrial DNA sequences of type specimens or topotypic material for most taxa. Lectotypes are designated for Testudo galeata Schoepff, 1792, Pentonyx capensis Duméril & Bibron, 1835, Pelomedusa nigra Gray, 1863, Pelomedusa galeata var. disjuncta Vaillant & Grandidier, 1910, and Pelomedusa galeata damarensis Hewitt, 1935. For Pelomedusa gasconi Rochebrune, 1884, a taxon without preserved type material, a neotype is designated. Type material of Pentonix americana Cornalia, 1849, a nominal species without credible type locality, is lost and its identity remains questionable. Also the holotype of Pelomedusa galeata orangensis Hewitt, 1935 is lost, but its allocation to the only genetic lineage occurring in South Africa is unambiguous. Phylogenetic analyses of type sequences or topotypic material reveal that the remaining nominal taxa represent three of the nine previously identified lineages of Pelomedusa. Among these three lineages is the South African one. Type specimens of Pentonyx gehafie Rüppell, 1835 correspond to an additional distinct lineage. The present study provides a sound basis for a subsequent integrative taxonomic revision of the Pelomedusa complex.


Subject(s)
Biodiversity , Turtles/classification , Africa South of the Sahara , Animals , Female , Madagascar , Male , Middle East , Phylogeny , Sequence Analysis, DNA , Turtles/anatomy & histology , Turtles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...