Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(15): 156702, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38682962

ABSTRACT

We report the magnetic properties of a cobalt oxalate metal-organic framework featuring the hyperoctagon lattice. Our thermodynamic measurements reveal the J_{eff}=1/2 state of the high-spin Co^{2+} (3d^{7}) ion and the two successive magnetic transitions at zero field with two-stage entropy release. ^{13}C-NMR measurements reveal the absence of an internal magnetic field in the intermediate temperature phase. Multiple field-induced phases are observed before full saturation at around 40 T. We argue the unique cobalt oxalate network gives rise to the Kitaev interaction and/or a bond frustration effect, providing an unconventional platform for frustrated magnetism on the hyperoctagon lattice.

2.
Phys Rev Lett ; 132(9): 096601, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38489634

ABSTRACT

In this study, we performed high-magnetic-field magnetization, dielectric, and ultrasound measurements on an organic salt showing a ferroelectric spin-Peierls (FSP) state, which is in close proximity to a quantum critical point. In contrast to the sparsely distributed gaslike spin solitons typically observed in conventional spin-Peierls (SP) states, the FSP state exhibits dense liquidlike spin solitons resulting from strong quantum fluctuations, even at low fields. Nevertheless, akin to conventional SP systems, a magnetic-field-induced transition is observed in the FSP state. In conventional high-field SP states, an emergent wave vector results in the formation of a spin-soliton lattice. However, in the present high-field FSP state, the strong quantum fluctuations preclude the formation of such a soliton lattice, causing the dense solitons to remain in a quantum-mechanically melted state. This observation implies the realization of a quantum liquid-liquid transition of topological particles carrying spin and charge in a ferroelectric insulator.

3.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37938066

ABSTRACT

We developed a metallic pressure cell made of 56Ni-40Cr-4Al (Ni-Cr-Al) alloy for use with a non-destructive pulse magnet and a magnetic susceptibility measurement apparatus with a proximity detector oscillator (PDO) in pulsed magnetic fields of up to 51 T under pressures of up to 2.1 GPa. Both the sample and sensor coil of the PDO were placed in the cell so that the magnetic signal from Ni-Cr-Al would not overlay the intrinsic magnetic susceptibility of the sample. A systematic investigation of the Joule heating originating from metallic parts of the pressure cell revealed that the increase in sample temperature is negligible at 1.4 K in magnetic fields of up to 40 T in the field-ascending process for the maximum applied magnetic field of 51 T. The effectiveness of our apparatus was demonstrated by investigating the pressure dependence of the magnetization process of the triangular-lattice antiferromagnet Ba3CoSb2O9.

4.
Nat Commun ; 14(1): 5613, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37699909

ABSTRACT

Pursuing the exotic quantum spin liquid (QSL) state in the Kitaev material α-RuCl3 has intrigued great research interest recently. A fascinating question is on the possible existence of a field-induced QSL phase in this compound. Here we perform high-field magnetization measurements of α-RuCl3 up to 102 T employing the non-destructive and destructive pulsed magnets. Under the out-of-plane field along the c* axis (i.e., perpendicular to the honeycomb plane), two quantum phase transitions are uncovered at respectively 35 T and about 83 T, between which lies an intermediate phase as the predicted QSL. This is in sharp contrast to the case with in-plane fields, where a single transition is found at around 7 T and the intermediate QSL phase is absent instead. By measuring the magnetization data with fields tilted from the c* axis up to 90° (i.e., in-plane direction), we obtain the field-angle phase diagram that contains the zigzag, paramagnetic, and QSL phases. Based on the K-J-Γ-[Formula: see text] model for α-RuCl3 with a large Kitaev term we perform density matrix renormalization group simulations and reproduce the quantum phase diagram in excellent agreement with experiments.

5.
Proc Natl Acad Sci U S A ; 120(33): e2302756120, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37549272

ABSTRACT

The mutual coupling of spin and lattice degrees of freedom is ubiquitous in magnetic materials and potentially creates exotic magnetic states in response to the external magnetic field. Particularly, geometrically frustrated magnets serve as a fertile playground for realizing magnetic superstructure phases. Here, we observe an unconventional two-step magnetostructural transition prior to a half-magnetization plateau in a breathing pyrochlore chromium spinel by means of state-of-the-art magnetization and magnetostriction measurements in ultrahigh magnetic fields available up to 600 T. Considering a microscopic magnetoelastic theory, the intermediate-field phase can be assigned to a magnetic superstructure with a three-dimensional periodic array of 3-up-1-down and canted 2-up-2-down spin molecules. We attribute the emergence of the magnetic superstructure to a unique combination of the strong spin-lattice coupling and large breathing anisotropy.

6.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37409909

ABSTRACT

To generate long-duration pulsed magnetic fields with low energy consumption, we present a practical setup that implements an electromagnet made of high-purity copper (99.9999%). The resistance of the high-purity copper coil decreases from 171 mΩ (300 K) to 19.3 mΩ (77.3 K) and to below ∼0.15 mΩ (4.2 K), indicating a high residual resistance ratio of 1140 and a substantial reduction in Joule loss at low temperature. Using a 157.5 F electric-double-layer-capacitor bank with a charged voltage of 100 V, a pulsed magnetic field of 19.8 T with a total field duration of more than 1 s is generated. The field strength of the liquid helium-cooled high-purity copper coil is approximately double that of a liquid nitrogen-cooled one. The low resistance of the coil and the resultant low Joule heating effect explain the improvements in accessible field strength. The low electric energy used for field generation warrants further investigation on low-impedance pulsed magnets consisting of high-purity metals.


Subject(s)
Copper , Helium , Magnetic Fields , Metals , Magnets
7.
J Phys Condens Matter ; 35(40)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37369230

ABSTRACT

Quantum oscillations (QOs) in magnetic torque and electrical resistivity were measured to investigate the electronic structure ofß-ReO2, a candidate hourglass nodal chain (NC) metal (Dirac loop chain metal). All the de Haas-van Alphen oscillation branches measured at 30 mK in magnetic fields of up to 17.5 T were consistent with first-principles calculations predicting four Fermi surfaces (FSs). The small-electron FS of the four FSs exhibited a very small cyclotron mass, 0.059 times that of the free electrons, which is likely related to the linear dispersion of the energy band. The consistency between the QO results and band calculations indicates the presence of the hourglass NC predicted forß-ReO2in the vicinity of the Fermi energy.

8.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37125859

ABSTRACT

We report an experimental setup for simultaneously measuring specific heat and thermal conductivity in feedback-controlled pulsed magnetic fields of 50 ms duration at cryogenic temperatures. A stabilized magnetic field pulse obtained by the feedback control, which dramatically improves the thermal stability of the setup and sample, is used in combination with the flash method to obtain absolute values of thermal properties up to 37.2 T in the 22-16 K temperature range. We describe the experimental setup and demonstrate the performance of the present method with measurements on single-crystal samples of the geometrically frustrated quantum spin-dimer system SrCu2(BO3)2. Our proof-of-principle results show excellent agreement with data taken using a standard steady-state method, confirming the validity and convenience of the present approach.

9.
Nat Commun ; 13(1): 7188, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36418308

ABSTRACT

Anomalous transport responses, dictated by the nontrivial band topology, are the key for application of topological materials to advanced electronics and spintronics. One promising platform is topological nodal-line semimetals due to their rich topology and exotic physical properties. However, their transport signatures have often been masked by the complexity in band crossings or the coexisting topologically trivial states. Here we show that, in slightly hole-doped SrAs3, the single-loop nodal-line states are well-isolated from the trivial states and entirely determine the transport responses. The characteristic torus-shaped Fermi surface and the associated encircling Berry flux of nodal-line fermions are clearly manifested by quantum oscillations of the magnetotransport properties and the quantum interference effect resulting in the two-dimensional behaviors of weak antilocalization. These unique quantum transport signatures make the isolated nodal-line fermions in SrAs3 desirable for novel devices based on their topological charge and spin transport.

10.
Nat Commun ; 13(1): 5590, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36192393

ABSTRACT

Exotic superconductivity is formed by unconventional electron pairing and exhibits various unique properties that cannot be explained by the basic theory. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is known as an exotic superconducting state in that the electron pairs have a finite center-of-mass momentum leading to a spatially modulated pattern of superconductivity. The spatial modulation endows the FFLO state with emergent anisotropy. However, the anisotropy has never been experimentally verified despite numerous efforts over the years. Here, we report detection of anisotropic acoustic responses depending on the sound propagation direction appearing above the Pauli limit. This anisotropy reveals that the two-dimensional FFLO state has a center-of-mass momentum parallel to the nesting vector on the Fermi surface. The present findings will facilitate our understanding of not only superconductivity in solids but also exotic pairings of various particles.

11.
Sci Rep ; 12(1): 2429, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35165370

ABSTRACT

We have successfully synthesized new Ru4+ double perovskite oxides SrLaInRuO6 and SrLaGaRuO6, which are expected to be a spin-orbit coupled Jeff = 0 Mott insulating ground state. Their magnetic susceptibility is much significant than that expected for a single Ru4+ ion for which exchange coupling with other ions is negligible. Their isothermal magnetization process suggests that there are about 20 percent isolated spins. These origins would be the Ru3+/Ru5+ magnetic defects, while the regular Ru4+ sites remain nonmagnetic. Moreover, SrLaGaRuO6 shows a spin-glass-like magnetic transition at low temperatures, probably caused by isolated spins. The observed spin-glass can be interpreted by the analogy of a dilute magnetic alloy, which can be seen as a precursor to the mobile Jeff = 1 exciton as a dispersive mode as predicted.

12.
Rev Sci Instrum ; 92(4): 043901, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243466

ABSTRACT

We have developed a new calorimeter for measuring the thermodynamic properties in pulsed magnetic fields. Instrumental design is described along with the instrument construction details, including the sensitivity of a RuO2 thermometer. Operation of the calorimeter is demonstrated by measuring the heat capacity of three samples: pure germanium, CeCu2Ge2, and κ-(BEDT-TTF)2Cu[N(CN)2]Br, in pulsed fields up to 43.5 T. Obtaining field stability is key in measuring high-resolution heat capacity under pulsed fields. We also examine the performance of the calorimeter by employing two measurement techniques: the quasi-adiabatic and dual-slope techniques. We demonstrate that the calorimeter developed in this study is capable of performing high-resolution calorimetry in pulsed magnetic fields, which opens the door to new opportunities for high-field thermodynamic studies.

13.
Rev Sci Instrum ; 92(2): 024711, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33648141

ABSTRACT

A pulsed power supply with a compact and low-cost electric-double-layer-capacitor (EDLC) is developed for generating pulsed magnetic fields with a long pulse duration of a few seconds. The system is demonstrated in three experimental setups using a 10.7 F- or 50 F-EDLC capacitor bank. By using the 10.7 F-EDLC capacitor bank with a 27 mm wide-bore magnet, the pulsed magnetic field with a peak field strength of 24.3 T and a pulse duration of ∼1 s is generated. The field profiles are reproduced in the theoretical calculations taking Joule heating into account. The calculations are also used to discuss possible variations of the field profile for future investigations.

14.
J Phys Condens Matter ; 33(12)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33463529

ABSTRACT

Magnetic and structural properties of double perovskite type bromides Cs2MBr6(M= Ta, Nb), where Ta4+(5d1) and Nb4+(4d1) ions form the face centered cubic lattice, are investigated and compared with chlorides Cs2MCl6. Cs2TaBr6exhibits the effective magnetic moment of 0.24µB, which is much smaller than the spin only value of ad1ion, 1.73µB, and comparable to 0.25µBin Cs2TaCl6. On the other hand, the effective magnetic moment of Cs2NbBr6is 0.7µBand is substantially smaller than 1.0µBin Cs2NbCl6. On cooling, successive structural and magnetic phase transitions accompanying the release of electronic entropy approximatelyRln 4 in total as expected for theJeff= 3/2 state are observed. The type of the ligand changes the temperature dependence of magnetic susceptibility at low temperature as well as its magnitude. The role of the ligands on the magnetism ofJeff= 3/2 Mott insulators are discussed in the light of metal-ligand hybridization and the electron-lattice coupling.

15.
Rev Sci Instrum ; 91(12): 125107, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33379936

ABSTRACT

We show theoretically and experimentally that accurate transport measurements are possible even within the short time provided by pulsed magnetic fields. For this purpose, a new method has been devised, which removes the noise component of a specific frequency from the signal by taking a linear combination of the results of numerical phase detection using multiple integer periods. We also established a method to unambiguously determine the phase rotation angle in AC transport measurements using a frequency range of tens of kilohertz. We revealed that the dominant noise in low-frequency transport measurements in pulsed magnetic fields is the electromagnetic induction caused by mechanical vibrations of wire loops in inhomogeneous magnetic fields. These results strongly suggest that accurate transport measurements in short-pulsed magnets are possible when mechanical vibrations are well suppressed.

16.
Nat Commun ; 11(1): 3429, 2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32647219

ABSTRACT

Observation of a quantum spin liquid (QSL) state is one of the most important goals in condensed-matter physics, as well as the development of new spintronic devices that support next-generation industries. The QSL in two dimensional quantum spin systems is expected to be due to geometrical magnetic frustration, and thus a kagome-based lattice is the most probable playground for QSL. Here, we report the first experimental results of the QSL state on a square-kagome quantum antiferromagnet, KCu6AlBiO4(SO4)5Cl. Comprehensive experimental studies via magnetic susceptibility, magnetisation, heat capacity, muon spin relaxation (µSR), and inelastic neutron scattering (INS) measurements reveal the formation of a gapless QSL at very low temperatures close to the ground state. The QSL behavior cannot be explained fully by a frustrated Heisenberg model with nearest-neighbor exchange interactions, providing a theoretical challenge to unveil the nature of the QSL state.

17.
Inorg Chem ; 59(15): 10986-10995, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32677828

ABSTRACT

Quasi-zero-dimensional antiferromagnets with weakly coupled clusters of multiple spins can provide an excellent platform for exploring exotic quantum states of matter. Here, we report the synthesis and the characterization of a copper-based insulating antiferromagnet, K(NbO)Cu4(PO4)4. Single-crystal X-ray diffraction measurements reveal that the crystal structure belongs to the tetragonal space group P4/nmm, in which Cu2+ ions align to form a quasi-two-dimensional layer of spin-1/2 coupled square tetramers. The structure is quasi-isostructural to recently reported magnetoelectric antiferromagnets, A(TiO)Cu4(PO4)4 (A = Ba, Sr, and Pb) with the P4212 space group. Despite their structural similarities, whereas the antiferromagnetic transition in A(TiO)Cu4(PO4)4 produces conventional anomalies in magnetization and heat capacity, that in K(NbO)Cu4(PO4)4 has several unusual features such as an upturn in magnetic susceptibility and a very weak specific heat anomaly that corresponds to a spin entropy release as small as 3%. These results indicate that the magnetism of K(NbO)Cu4(PO4)4 is far different from that of A(TiO)Cu4(PO4)4 and suggest that the ground state is very close to a quantum nonmagnetic singlet state. The origin of the distinct magnetism in K(NbO)Cu4(PO4)4 is discussed in terms of structural modifications of a Cu4O12 unit forming a square tetramer. Our study demonstrates that the present material family, represented by an extended chemical formula A(BO)Cu4(PO4)4 (AB = KNb, BaTi, SrTi, and PbTi), has broad chemical controllability of their magnetism. This makes this system an attractive material platform to study the physics of quantum spin-1/2 coupled square tetramers.

18.
Phys Rev Lett ; 124(22): 227202, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567900

ABSTRACT

Structural and magnetic properties of cubic spinel selenides GaM_{4}Se_{8} (M=Nb, Ta), which are candidates for the molecular J_{eff}=3/2 Mott insulators, are investigated. The effective magnetic moments are reduced compared to the spin only value, indicating the presence of sizable spin-orbit coupling. GaNb_{4}Se_{8} and GaTa_{4}Se_{8} exhibit phase transitions into the nonmagnetic ground states with orthorhombic and tetragonal structures, respectively, which are robust against magnetic field up to at least 60 T. A cubic-cubic phase transition is observed in GaNb_{4}Se_{8} preceding the magnetic transition, suggesting the existence of a quadrupolar-ordered phase theoretically predicted in the J_{eff}=3/2 Mott insulator.

19.
Proc Natl Acad Sci U S A ; 116(22): 10686-10690, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31072923

ABSTRACT

Water freezes into ice in winter and evaporates into vapor in summer. Scientifically, the transformations between solid, liquid, and gas are called phase transitions and can be classified through the changes in symmetry which occur in each case. A fourth phase of matter was discovered late in the 19th century: the liquid crystal nematic, in which rod- or disk-shaped molecules align like the atoms in a solid, while continuing to flow like a liquid. Here we report thermodynamic evidence of a quantum analog of the classical nematic phase, the quantum spin nematic (SN). In an SN, the spins of a quantum magnet select a common axis, like a nematic liquid crystal, while escaping conventional magnetic order. Our state-of-the-art thermal measurements in high pulsed magnetic fields up to 33 T on the copper mineral volborthite with spin 1/2 on a frustrated lattice provide thermodynamic evidence for SN order, half a century after the theoretical proposal [Blume M, Hsieh YY (1969) J Appl Phys 40:1249; Andreev AF, Grishchuk IA (1984) J Exp Theor Phys 97:467-475].

20.
Proc Natl Acad Sci U S A ; 116(18): 8803-8808, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30988202

ABSTRACT

Pyrochlore iridates have provided a plethora of novel phenomena owing to the combination of topology and correlation. Among them, much attention has been paid to [Formula: see text], as it is known as a Luttinger semimetal characterized by quadratic band touching at the Brillouin zone center, suggesting that the topology of its electronic states can be tuned by a moderate lattice strain and external magnetic field. Here, we report that our epitaxial [Formula: see text] thin films grown by solid-state epitaxy exhibit a spontaneous Hall effect that persists up to 50 K without having spontaneous magnetization within our experimental accuracy. This indicates that the system breaks the time reversal symmetry at a temperature scale that is too high for the magnetism to be due to Pr 4f moments and must be related to magnetic order of the iridium 5d electrons. Moreover, our analysis finds that the chiral anomaly induces the negative contribution to the magnetoresistance only when a magnetic field and the electric current are parallel to each other. Our results indicate that the strained part of the thin film forms a magnetic Weyl semimetal state.

SELECTION OF CITATIONS
SEARCH DETAIL
...