Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Res Sq ; 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37720021

ABSTRACT

Serum amyloid A (SAA) proteins increase dramatically in the blood following inflammation. Recently, SAAs are increased in humans following stroke and in ischemic animal models. However, the impact of SAAs on whether this signal is critical in the ischemic brain remains unknown. Therefore, we investigated the role of SAA and SAA signaling in the ischemic brain. Wildtype and SAA deficient mice were exposed to middle cerebral artery occlusion and reperfusion, examined for the impact of infarct volumes, behavioral changes, inflammatory markers, TUNEL staining, and BBB changes. The underlying mechanisms were investigated using SAA deficient mice, transgenic mice and viral vectors. SAA levels were significantly increase following MCAo and mice deficient in SAAs showed reduced infarct volumes and improved behavioral outcomes. SAA deficient mice showed a reduction in TUNEL staining, inflammation and decreased glial activation. Mice lacking acute phase SAAs demonstrated a reduction in expression of the NLRP3 inflammasome and SAA/NLRP3 KO mice showed improvement. Restoration of SAA expression via SAA tg mice or adenoviral expression reestablished the detrimental effects of SAA. A reduction in BBB permeability was seen in the SAA KO mice and anti-SAA antibody treatment reduced the effects on ischemic injury. SAA signaling plays a critical role in regulating NLRP3-induced inflammation and glial activation in the ischemic brain. Blocking this signal will be a promising approach for treating ischemic stroke.

2.
J Alzheimers Dis ; 93(1): 33-46, 2023.
Article in English | MEDLINE | ID: mdl-36970896

ABSTRACT

The lysosomal cysteine protease cathepsin B (CTSB) has been suggested as a biomarker for Alzheimer's disease (AD) because elevated serum CTSB in AD patients has been found to correlate with cognitive dysfunction. Furthermore, CTSB gene knockout (KO) in non-transgenic and transgenic AD animal models showed that elimination of CTSB improved memory deficits. However, conflicting CTSB KO results on amyloid-ß (Aß) pathology in transgenic AD models have been reported. The conflict is resolved here as likely being due to the different hAßPP transgenes used in the different AD mouse models. CTSB gene KO reduced wild-type (Wt) ß-secretase activity, brain Aß, pyroglutamate-Aß, amyloid plaque, and memory deficits in models that used cDNA transgenes expressing hAßPP isoform 695. But in models that used mutated mini transgenes expressing hAßPP isoforms 751 and 770, CTSB KO had no effect on Wt ß-secretase activity and slightly increased brain Aß. All models expressed the AßPP transgenes in neurons. These conflicting results in Wt ß-secretase activity models can be explained by hAßPP isoform specific cellular expression, proteolysis, and subcellular processing. CTSB KO had no effect on Swedish mutant (Swe) ß-secretase activity in hAßPP695 and hAßPP751/770 models. Different proteolytic sensitivities for hAßPP with Wt versus Swe ß-secretase site sequences may explain the different CTSB ß-secretase effects in hAßPP695 models. But since the vast majority of sporadic AD patients have Wt ß-secretase activity, the CTSB effects on Swe ß-secretase activity are of little importance to the general AD population. As neurons naturally produce and process hAßPP isoform 695 and not the 751 and 770 isoforms, only the hAßPP695 Wt models mimic the natural neuronal hAßPP processing and Aß production occurring in most AD patients. Significantly, these CTSB KO findings in the hAßPP695 Wt models demonstrate that CTSB participates in memory deficits and production of pyroglutamate-Aß (pyroglu-Aß), which provide rationale for future investigation of CTSB inhibitors in AD therapeutics development.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Cathepsin B/metabolism , Amyloid Precursor Protein Secretases/metabolism , Pyrrolidonecarboxylic Acid , Amyloid beta-Peptides/metabolism , Memory Disorders/genetics , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic
3.
Cereb Circ Cogn Behav ; 4: 100161, 2023.
Article in English | MEDLINE | ID: mdl-36741272

ABSTRACT

Introduction: Various lifestyle factors such as chronic hypertension and a high-sodium diet regimen are shown to impact cerebrovascular morphology and structure. Unusual cerebrovascular morphological and structural changes may contribute to cerebral hypoperfusion in Alzheimer's disease (AD). The objective of this study was to examine whether a high-sodium diet mediates cerebrovascular morphology and cerebral perfusion alterations in AD. Methods: Double transgenic mice harboring Aß precursor protein (APPswe) and presenilin-1 (PSEN1) along with wild-type controls were divided into four groups. Group A (APP/PS1) and B (controls) were both fed a high-sodium (4.00%), while group C (APP/PS1) and D (controls) were both fed a low-sodium (0.08% a regular chow diet) for three months. Then, changes in regional cerebral perfusion and diffusion, cerebrovascular morphology, and structure were quantified. Results: A 3-month high-sodium diet causes pyknosis and deep staining in hippocampal neurons and reduced vascular density in both hippocampal and cortical areas (p <0.001) of APP/PS1. Despite vascular density changes, cerebral perfusion was not increased markedly (p = 0.3) in this group, though it was increased more in wild-type controls (p = 0.022). Conclusion: A high-sodium diet regimen causes cerebrovascular morphology alteration in APP/PS1 mouse model of AD.

4.
FEBS Lett ; 596(22): 2914-2927, 2022 11.
Article in English | MEDLINE | ID: mdl-35971617

ABSTRACT

Previous studies have shown that amyloid-ß oligomers (AßO) bind with high affinity to cellular prion protein (PrPC ). The AßO-PrPC complex binds to cell-surface co-receptors, including the laminin receptor (67LR). Our current studies revealed that in Neuroscreen-1 cells, 67LR is the major co-receptor involved in the cellular uptake of AßO and AßΟ-induced cell death. Both pharmacological (dibutyryl-cAMP, forskolin and rolipram) and physiological (pituitary adenylate cyclase-activating polypeptide) cAMP-elevating agents decreased cell-surface PrPC and 67LR, thereby attenuating the uptake of AßO and the resultant neuronal cell death. These cAMP protective effects are dependent on protein kinase A, but not dependent on the exchange protein directly activated by cAMP. Conceivably, cAMP protects neuronal cells from AßO-induced cytotoxicity by decreasing cell-surface-associated PrPC and 67LR.


Subject(s)
Amyloid beta-Peptides , PrPC Proteins , Amyloid beta-Peptides/metabolism , Prion Proteins , PrPC Proteins/metabolism , Laminin/metabolism , Cell Death , Receptors, Laminin/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide
5.
Pharmacol Rev ; 74(3): 600-629, 2022 07.
Article in English | MEDLINE | ID: mdl-35710131

ABSTRACT

Cathepsin B (CTSB) is a powerful lysosomal protease. This review evaluated CTSB gene knockout (KO) outcomes for amelioration of brain dysfunctions in neurologic diseases and aging animal models. Deletion of the CTSB gene resulted in significant improvements in behavioral deficits, neuropathology, and/or biomarkers in traumatic brain injury, ischemia, inflammatory pain, opiate tolerance, epilepsy, aging, transgenic Alzheimer's disease (AD), and periodontitis AD models as shown in 12 studies. One study found beneficial effects for double CTSB and cathepsin S KO mice in a multiple sclerosis model. Transgenic AD models using amyloid precursor protein (APP) mimicking common sporadic AD in three studies showed that CTSB KO improved memory, neuropathology, and biomarkers; two studies used APP representing rare familial AD and found no CTSB KO effect, and two studies used highly engineered APP constructs and reported slight increases in a biomarker. In clinical studies, all reports found that CTSB enzyme was upregulated in diverse neurologic disorders, including AD in which elevated CTSB was positively correlated with cognitive dysfunction. In a wide range of neurologic animal models, CTSB was also upregulated and not downregulated. Further, human genetic mutation data provided precedence for CTSB upregulation causing disease. Thus, the consilience of data is that CTSB gene KO results in improved brain dysfunction and reduced pathology through blockade of CTSB enzyme upregulation that causes human neurologic disease phenotypes. The overall findings provide strong support for CTSB as a rational drug target and for CTSB inhibitors as therapeutic candidates for a wide range of neurologic disorders. SIGNIFICANCE STATEMENT: This review provides a comprehensive compilation of the extensive data on the effects of deleting the cathepsin B (CTSB) gene in neurological and aging mouse models of brain disorders. Mice lacking the CTSB gene display improved neurobehavioral deficits, reduced neuropathology, and amelioration of neuronal cell death and inflammatory biomarkers. The significance of the compelling CTSB evidence is that the data consilience validates CTSB as a drug target for discovery of CTSB inhibitors as potential therapeutics for treating numerous neurological diseases.


Subject(s)
Alzheimer Disease , Cathepsin B , Alzheimer Disease/metabolism , Animals , Cathepsin B/genetics , Cathepsin B/metabolism , Disease Models, Animal , Gene Knockout Techniques , Humans , Mice , Mice, Knockout , Mice, Transgenic
7.
Curr Alzheimer Res ; 18(12): 941-955, 2021.
Article in English | MEDLINE | ID: mdl-34951366

ABSTRACT

Βackground: ß-Amyloid precursor protein-cleaving enzyme-1 (BACE1) initiates the production of Aß-peptides that form Aß-plaque in Alzheimer's disease. METHODS: Reportedly, acute insulin treatment in normal mice, and hyperinsulinemia in high-fat-fed (HFF) obese/diabetic mice, increase BACE1 activity and levels of Aß-peptides and phospho- -thr-231-tau in the brain; moreover, these effects are blocked by PKC-λ/ι inhibitors. However, as chemical inhibitors may affect unsuspected targets, we presently used knockout methodology to further examine PKC-λ/ι requirements. We found that total-body heterozygous PKC-λ knockout reduced acute stimulatory effects of insulin and chronic effects of hyperinsulinemia in HFF/obese/diabetic mice, on brain PKC-λ activity and production of Aß1-40/42 and phospho-thr-231-tau. This protection in HFF mice may reflect that hepatic PKC-λ haploinsufficiency prevents the development of glucose intolerance and hyperinsulinemia. RESULTS: On the other hand, heterozygous knockout of PKC-λ markedly reduced brain levels of BACE1 protein and mRNA, and this may reflect diminished activation of nuclear factor kappa-B (NFκB), which is activated by PKC-λ and increases BACE1 and proinflammatory cytokine transcription. Accordingly, whereas intravenous administration of aPKC inhibitor diminished aPKC activity and BACE1 levels by 50% in the brain and 90% in the liver, nasally-administered inhibitor reduced aPKC activity and BACE1 mRNA and protein levels by 50-70% in the brain while sparing the liver. Additionally, 24-hour insulin treatment in cultured human-derived neurons increased NFκB activity and BACE1 levels, and these effects were blocked by various PKC-λ/ι inhibitors. CONCLUSION: PKC-λ/ι controls NFκB activity and BACE1 expression; PKC-λ/ι inhibitors may be used nasally to target brain PKC-λ/ι or systemically to block both liver and brain PKC-λ/ι, to regulate NFκB-dependent BACE1 and proinflammatory cytokine expression.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Diabetes Mellitus, Experimental , NF-kappa B , Protein Kinase C , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Mice , NF-kappa B/metabolism , Protein Kinase C/genetics
8.
MedComm (2020) ; 2(1): 3-16, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34766133

ABSTRACT

Diet-induced obesity, the metabolic syndrome, type 2 diabetes (DIO/MetS/T2DM), and their adverse sequelae have reached pandemic levels. In mice, DIO/MetS/T2DM initiation involves diet-dependent increases in lipids that activate hepatic atypical PKC (aPKC) and thereby increase lipogenic enzymes and proinflammatory cytokines. These or other hepatic aberrations, via adverse liver-to-muscle cross talk, rapidly impair postreceptor insulin signaling to glucose transport in muscle. The ensuing hyperinsulinemia further activates hepatic aPKC, which first blocks the ability of Akt to suppress gluconeogenic enzyme expression, and later impairs Akt activation, further increasing hepatic glucose production. Recent findings suggest that hepatic aPKC also increases a proteolytic enzyme that degrades insulin receptors. Fortunately, all hepatic aberrations and muscle impairments are prevented/reversed by inhibition or deficiency of hepatic aPKC. But, in the absence of treatment, hyperinsulinemia induces adverse events, some by using "spare receptors" to bypass receptor defects. Thus, in brain, hyperinsulinemia increases Aß-plaque precursors and Alzheimer risk; in kidney, hyperinsulinemia activates the renin-angiotensin-adrenal axis, thus increasing vasoconstriction, sodium retention, and cardiovascular risk; and in liver, hyperinsulinemia increases lipogenesis, obesity, hepatosteatosis, hyperlipidemia, and cardiovascular risk. In summary, increases in hepatic aPKC are critically required for development of DIO/MetS/T2DM and its adverse sequelae, and therapeutic approaches that limit hepatic aPKC may be particularly effective.

9.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33430045

ABSTRACT

Plant-based nutritional supplementation has been shown to attenuate and reduce mortality in the processes of both acute and chronic disorders, including diabetes, obesity, cardiovascular disease, cancer, inflammatory diseases, and neurological and neurodegenerative disorders. Low-level systemic inflammation is an important contributor to these afflictions and diets enriched in phytochemicals can slow the progression. The goal of this study was to determine the impact of lipopolysaccharide (LPS)-induced inflammation on changes in glucose and insulin tolerance, performance enhancement, levels of urinary neopterin and concentrations of neurotransmitters in the striatum in mouse models. Both acute and chronic injections of LPS (2 mg/kg or 0.33 mg/kg/day, respectively) reduced glucose and insulin tolerance and elevated neopterin levels, which are indicative of systemic inflammatory responses. In addition, there were significant decreases in striatal neurotransmitter levels (dopamine and DOPAC), while serotonin (5-HT) levels were essentially unchanged. LPS resulted in impaired execution in the incremental loading test, which was reversed in mice on a supplemental plant-based diet, improving their immune function and maintaining skeletal muscle mitochondrial activity. In conclusion, plant-based nutritional supplementation attenuated the metabolic changes elicited by LPS injections, causing systemic inflammatory activity that contributed to both systemic and neurological alterations.


Subject(s)
Inflammation/diet therapy , Muscle, Skeletal/metabolism , Obesity/diet therapy , Phytochemicals/pharmacology , Animals , Diet , Dietary Supplements , Disease Models, Animal , Dopamine/metabolism , Glucose/metabolism , Inflammation/chemically induced , Inflammation/pathology , Lipopolysaccharides/toxicity , Mice , Muscle, Skeletal/drug effects , Neopterin/urine , Obesity/chemically induced , Obesity/pathology , Serotonin/metabolism
10.
Antioxidants (Basel) ; 10(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466250

ABSTRACT

Despite existing strong evidence on oxidative markers overproduction following ischemia/reperfusion (I/R), the mechanism by which oxidative enzyme Cytochrome P450-2E1 (CYP2E1) contributes to I/R outcomes is not clear. In this study, we sought to evaluate the functional significance of CYP2E1 in I/R. CYP2E1 KO mice and controls were subjected to middle cerebral artery occlusion (MCAo-90 min) followed by 24 h of reperfusion to induce focal I/R injury as an acute stage model. Then, histological and chemical analyses were conducted to investigate the role of CYP2E1 in lesion volume, oxidative stress, and inflammation exacerbation. Furthermore, the role of CYP2E1 on the blood-brain barrier (BBB) integrity was investigated by measuring 20-hydroxyecosatetraenoic acid (20-HETE) activity, as well as, in vivo BBB transfer rate. Following I/R, the CYP2E1 KO mice exhibited a significantly lower lesion volume, and neurological deficits compared to controls (p < 0.005). Moreover, reactive oxygen species (ROS) production, apoptosis, and neurodegeneration were significantly lower in the CYP2E1(-/-) I/R group (p < 0.001). The BBB damage was significantly lower in CYP2E1(-/-) mice compared to wild-type (WT) (p < 0.001), while 20-HETE production was increased by 41%. Besides, inflammatory cytokines expression and the number of activated microglia were significantly lower in CYP2E1(-/-) mice following I/R. CYP2E1 suppression ameliorates I/R injury and protects BBB integrity by reducing both oxidative stress and inflammation.

11.
Brain Sci ; 10(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228251

ABSTRACT

The relationship between alcohol consumption and traumatic brain injury (TBI) often focuses on alcohol consumption increasing the likelihood of incurring a TBI, rather than alcohol use outcomes after TBI. However, patients without a history of an alcohol use disorder can also show increased problem drinking after single or multiple TBIs. Alcohol and mild TBI share diffuse deleterious neurological impacts and cognitive impairments; therefore, the purpose of these studies was to determine if an interaction on brain and behavior outcomes occurs when alcohol is consumed longitudinally after TBI. To examine the impact of mild repetitive TBI (rmTBI) on voluntary alcohol consumption, mice were subjected to four mild TBI or sham procedures over a 2 week period, then offered alcohol (20% v/v) for 2 weeks using the two-bottle choice, drinking in the dark protocol. Following the drinking period, mice were evaluated for neuroinflammatory cytokine response or tested for cognitive and behavioral deficits. Results indicate no difference in alcohol consumption or preference following rmTBI as compared to sham; however, increases in the neuroinflammatory cytokine response due to alcohol consumption and some mild cognitive behavioral deficits after rmTBI and alcohol consumption were observed. These data suggest that the cytokine response to alcohol drinking and rmTBI + alcohol drinking is not necessarily aggregate, but the combination does result in an exacerbation of cognitive behavioral outcomes.

12.
Exp Biol Med (Maywood) ; 245(16): 1444-1473, 2020 10.
Article in English | MEDLINE | ID: mdl-32878460

ABSTRACT

IMPACT STATEMENT: Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.


Subject(s)
Brain/pathology , Iron/metabolism , Neurodegenerative Diseases/pathology , Animals , Biological Transport , Homeostasis , Humans , Models, Biological
13.
Nutrients ; 12(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824223

ABSTRACT

Nutritional ketosis has been proven effective for neurometabolic conditions and disorders linked to metabolic dysregulation. While inducing nutritional ketosis, ketogenic diet (KD) can improve motor performance in the context of certain disease states, but it is unknown whether exogenous ketone supplements-alternatives to KDs-may have similar effects. Therefore, we investigated the effect of ketone supplements on motor performance, using accelerating rotarod test and on postexercise blood glucose and R-beta-hydroxybutyrate (R-ßHB) levels in rodent models with and without pathology. The effect of KD, butanediol (BD), ketone-ester (KE), ketone-salt (KS), and their combination (KE + KS: KEKS) or mixtures with medium chain triglyceride (MCT) (KE + MCT: KEMCT; KS + MCT: KSMCT) was tested in Sprague-Dawley (SPD) and WAG/Rij (WR) rats and in GLUT-1 Deficiency Syndrome (G1D) mice. Motor performance was enhanced by KEMCT acutely, KE and KS subchronically in SPD rats, by KEKS and KEMCT groups in WR rats, and by KE chronically in G1D mice. We demonstrated that exogenous ketone supplementation improved motor performance to various degrees in rodent models, while effectively elevated R-ßHB and in some cases offsets postexercise blood glucose elevations. Our results suggest that improvement of motor performance varies depending on the strain of rodents, specific ketone formulation, age, and exposure frequency.


Subject(s)
Dietary Supplements , Ketones/administration & dosage , Motor Activity/drug effects , 3-Hydroxybutyric Acid/blood , Animals , Blood Glucose/analysis , Butylene Glycols/administration & dosage , Butylene Glycols/blood , Carbohydrate Metabolism, Inborn Errors/metabolism , Carbohydrate Metabolism, Inborn Errors/therapy , Diet, Ketogenic/methods , Humans , Ketosis/blood , Ketosis/therapy , Male , Mice , Models, Animal , Monosaccharide Transport Proteins/deficiency , Monosaccharide Transport Proteins/metabolism , Rats , Rats, Sprague-Dawley , Rodentia , Rotarod Performance Test/methods , Triglycerides/blood
15.
Clin Exp Hypertens ; 42(7): 622-639, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32420765

ABSTRACT

PURPOSE: To review the recent developments on the effect of chronic high mean arterial blood pressure (MAP) on cerebral blood flow (CBF) autoregulation and supporting the notion that CBF autoregulation impairment has connection with chronic cerebral diseases. Method: A narrative review of all the relevant papers known to the authors was conducted. Results: Our understanding of the connection between cerebral perfusion impairment and chronic high MAP and cerebral disease is rapidly evolving, from cerebral perfusion impairment being the result of cerebral diseases to being the cause of cerebral diseases. We now better understand the intertwined impact of hypertension and Alzheimer's disease (AD) on cerebrovascular sensory elements and recognize cerebrovascular elements that are more vulnerable to these diseases. Conclusion: We conclude with the suggestion that the sensory elements pathology plays important roles in intertwined mechanisms of chronic high MAP and AD that impact cerebral perfusion.


Subject(s)
Alzheimer Disease/physiopathology , Arterial Pressure/physiology , Cerebrovascular Circulation , Hypertension/physiopathology , Homeostasis , Humans
16.
Biochem Biophys Res Commun ; 523(3): 678-684, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31948754

ABSTRACT

The promotion of axonal regeneration is required for functional recovery from stroke and various neuronal injuries. However, axonal regeneration is inhibited by diverse axonal growth inhibitors, such as Nogo-A. Nogo-66, a C-terminal domain of Nogo-A, binds to the Nogo-A receptor 1 (NgR1) and induces the collapse of growth cones and inhibits neurite outgrowth. NgR1 is also a receptor for additional axonal growth inhibitors, suggesting it is an important target for the prevention of axonal growth inhibition. By using the indirect immunofluorescence method, we show for the first time that a cell-permeable cAMP analog (dibutyryl-cAMP) induced a rapid decrease in the cell surface expression of NgR1 in Neuroscreen-1 (NS-1) cells. The biotinylation method revealed that cAMP indeed induced internalization of NgR1 within minutes. Other intracellular cAMP-elevating agents, such as forskolin, which directly activates adenylyl cyclase, and rolipram, which inhibits cyclic nucleotide phosphodiesterase, also induced this process. This internalization was found to be reversible and influenced by intracellular levels of cAMP. Using selective activators and inhibitors of protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac), we found that NgR1 internalization is independent of PKA, but dependent on Epac. The decrease in cell surface expression of NgR1 desensitized NS-1 cells to Nogo-66-induced growth cone collapse. Therefore, it is likely that besides axonal growth inhibitors affecting neurons, neurons themselves also self-regulate their sensitivity to axonal growth inhibitors, as influenced by intracellular cAMP/Epac. This normal cellular regulatory mechanism may be pharmacologically exploited to overcome axonal growth inhibitors, and enhance functional recovery after stroke and neuronal injuries.


Subject(s)
Cyclic AMP/metabolism , Growth Cones/metabolism , Neurons/metabolism , Nogo Proteins/metabolism , Nogo Receptor 1/metabolism , Animals , Guanine Nucleotide Exchange Factors/metabolism , Neurons/cytology , PC12 Cells , Protein Transport , Rats
17.
Nutrients ; 13(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396967

ABSTRACT

Alzheimer's disease (AD) is the result of the deposition of amyloid ß (Aß) peptide into amyloid fibrils and tau into neurofibrillary tangles. At the present time, there are no possible treatments for the disease. We have recently shown that diets enriched in phytonutrients show protection or limit the extent of damage in a number of neurological disorders. GrandFusion (GF) diets have attenuated the outcomes in animal models of traumatic brain injury, cerebral ischemia, and chronic traumatic encephalopathy. In this study, we investigated the effect of GF diets in a mouse model of AD prior to the development of amyloid plaques to show how this treatment paradigm would alter the accumulation of Aß peptide and related pathologic changes (i.e., inflammation, cathepsin B, and memory impairment). Administration of GF diets (2-4%) over a period of four months in APP/ΔPS1 double-transgenic mice resulted in attenuation in Aß peptide levels, reduction of amyloid load, and inflammation, increased cathepsin B expression, and improved spatial orientation. Additionally, treatment with GF diets increased nerve growth factor (NGF) levels in the brain and tempered the memory impairment in the animal model. These data suggest that GF diets may alter the development and progression of the mechanisms associated with the disease process to effectively modify AD pathogenesis.


Subject(s)
Alzheimer Disease/diet therapy , Brain/metabolism , Diet , Memory Disorders/diet therapy , Plaque, Amyloid/diet therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Female , Humans , Male , Memory Disorders/genetics , Memory Disorders/metabolism , Mice , Mice, Transgenic , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Time Factors
18.
J Neurosci ; 39(47): 9465-9476, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31611307

ABSTRACT

Serum amyloid A (SAA) proteins are acute-phase reactant associated with high-density lipoprotein (HDL) particles and increase in the plasma 1000-fold during inflammation. Recent studies have implicated SAAs in innate immunity and various disorders; however, the precise mechanism eludes us. Previous studies have shown SAAs are elevated following stroke and cerebral ischemia, and our studies demonstrated that SAA-deficient mice reduce inflammation and infarct volumes in a mouse stroke model. Our studies demonstrate that SAA increases the cytokine interleukin-1ß (IL-1ß), which is mediated by Nod-like receptor protein 3 (NLRP3) inflammasome, cathepsin B, and caspase-1 and may play a role in the pathogenesis of neurological disorders. SAA induced the expression of NLRP3, which mediated IL-1ß induction in murine BV-2 cells and both sex primary mouse microglial cells, in a dose- and time-dependent fashion. Inhibition or KO of the NLRP3 in microglia prevented the increase in IL-1ß. N-acetyl-l-cysteine and mito-TEMPO blocked the induction of IL-1ß by inhibiting ROS with SAA treatment. In addition, inhibition of cathepsin B with different drugs or microglia from CatB-deficient mice attenuated inflammasome activation. Our studies suggest that the impact of SAA on inflammasome stimulation is mediated in part by the receptor for advanced glycation endproducts and Toll-like receptor proteins 2 and 4. SAA induced inflammatory cytokines and an M1 phenotype in the microglial cells while downregulating anti-inflammation M2 phenotype. These studies suggest that brain injury to can elicit a systemic inflammatory response mediated through SAA that contributes to the pathological outcomes.SIGNIFICANCE STATEMENT In the present study, serum amyloid A can induce that activation of the inflammasome in microglial cells and give rise to IL-1ß release, which can further inflammation in the brain following neurological diseases. The also presents a novel target for therapeutic approaches in stroke.


Subject(s)
Brain Ischemia/metabolism , Inflammasomes/metabolism , Inflammation Mediators/metabolism , Microglia/drug effects , Microglia/metabolism , Serum Amyloid A Protein/toxicity , Animals , Brain Ischemia/pathology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/pathology
19.
Nutrients ; 11(10)2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31581549

ABSTRACT

Diseases involving inflammation and oxidative stress can be exacerbated by high blood glucose levels. Due to tight metabolic regulation, safely reducing blood glucose can prove difficult. The ketogenic diet (KD) reduces absolute glucose and insulin, while increasing fatty acid oxidation, ketogenesis, and circulating levels of ß-hydroxybutyrate (ßHB), acetoacetate (AcAc), and acetone. Compliance to KD can be difficult, so alternative therapies that help reduce glucose levels are needed. Exogenous ketones provide an alternative method to elevate blood ketone levels without strict dietary requirements. In this study, we tested the changes in blood glucose and ketone (ßHB) levels in response to acute, sub-chronic, and chronic administration of various ketogenic compounds in either a post-exercise or rested state. WAG/Rij (WR) rats, a rodent model of human absence epilepsy, GLUT1 deficiency syndrome mice (GLUT1D), and wild type Sprague Dawley rats (SPD) were assessed. Non-pathological animals were also assessed across different age ranges. Experimental groups included KD, standard diet (SD) supplemented with water (Control, C) or with exogenous ketones: 1, 3-butanediol (BD), ßHB mineral salt (KS), KS with medium chain triglyceride/MCT (KSMCT), BD acetoacetate diester (KE), KE with MCT (KEMCT), and KE with KS (KEKS). In rested WR rats, the KE, KS, KSMCT groups had lower blood glucose level after 1 h of treatment, and in KE and KSMCT groups after 24 h. After exercise, the KE, KSMCT, KEKS, and KEMCT groups had lowered glucose levels after 1 h, and in the KEKS and KEMCT groups after 7 days, compared to control. In GLUT1D mice without exercise, only KE resulted in significantly lower glucose levels at week 2 and week 6 during a 10 weeks long chronic feeding study. In 4-month and 1-year-old SPD rats in the post-exercise trials, blood glucose was significantly lower in KD and KE, and in KEMCT groups, respectively. After seven days, the KSMCT group had the most significantly reduced blood glucose levels, compared to control. These results indicate that exogenous ketones were efficacious in reducing blood glucose levels within and outside the context of exercise in various rodent models of different ages, with and without pathology.


Subject(s)
3-Hydroxybutyric Acid/pharmacology , Acetoacetates/pharmacology , Blood Glucose/drug effects , Butylene Glycols/pharmacology , Carbohydrate Metabolism, Inborn Errors/therapy , Diet, Ketogenic , Dietary Supplements , Epilepsy, Absence/therapy , Monosaccharide Transport Proteins/deficiency , Animals , Biomarkers , Blood Glucose/metabolism , Carbohydrate Metabolism, Inborn Errors/blood , Carbohydrate Metabolism, Inborn Errors/genetics , Carbohydrate Metabolism, Inborn Errors/physiopathology , Disease Models, Animal , Down-Regulation , Epilepsy, Absence/blood , Epilepsy, Absence/genetics , Epilepsy, Absence/physiopathology , Glucose Transporter Type 1/deficiency , Glucose Transporter Type 1/genetics , Male , Mice, Knockout , Monosaccharide Transport Proteins/blood , Monosaccharide Transport Proteins/genetics , Physical Exertion , Rats, Sprague-Dawley , Rest , Time Factors
20.
Front Psychiatry ; 10: 363, 2019.
Article in English | MEDLINE | ID: mdl-31178772

ABSTRACT

Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) are becoming more prevalent. Although the exact pathological alterations are not yet clear, recent studies have demonstrated that widespread changes of very complex metabolic pathways may partially underlie the pathophysiology of many psychiatric diseases. Thus, more attention should be directed to metabolic-based therapeutic interventions in the treatment of psychiatric disorders. Emerging evidence from numerous studies suggests that administration of exogenous ketone supplements, such as ketone salts or ketone esters, generates rapid and sustained nutritional ketosis and metabolic changes, which may evoke potential therapeutic effects in cases of central nervous system (CNS) disorders, including psychiatric diseases. Therefore, the aim of this review is to summarize the current information on ketone supplementation as a potential therapeutic tool for psychiatric disorders. Ketone supplementation elevates blood levels of the ketone bodies: D-ß-hydroxybutyrate (ßHB), acetoacetate (AcAc), and acetone. These compounds, either directly or indirectly, beneficially affect the mitochondria, glycolysis, neurotransmitter levels, activity of free fatty acid receptor 3 (FFAR3), hydroxycarboxylic acid receptor 2 (HCAR2), and histone deacetylase, as well as functioning of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome and mitochondrial uncoupling protein (UCP) expression. The result of downstream cellular and molecular changes is a reduction in the pathophysiology associated with various psychiatric disorders. We conclude that supplement-induced nutritional ketosis leads to metabolic changes and improvements, for example, in mitochondrial function and inflammatory processes, and suggest that development of specific adjunctive ketogenic protocols for psychiatric diseases should be actively pursued.

SELECTION OF CITATIONS
SEARCH DETAIL
...