Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biochem Parasitol ; 210(1-2): 71-84, 2016.
Article in English | MEDLINE | ID: mdl-27678398

ABSTRACT

The protozoan parasite responsible for human amoebiasis is Entamoeba histolytica. An important facet of the life cycle of E. histolytica involves the conversion of the mature trophozoite to a cyst. This transition is thought to involve homologous recombination (HR), which is dependent upon the Rad51 recombinase. Here, a biochemical characterization of highly purified ehRad51 protein is presented. The ehRad51 protein preferentially binds ssDNA, forms a presynaptic filament and possesses ATP hydrolysis activity that is stimulated by the presence of DNA. Evidence is provided that ehRad51 catalyzes robust DNA strand exchange over at least 5.4 kilobase pairs. Although the homologous DNA pairing activity of ehRad51 is weak, it is strongly enhanced by the presence of two HR accessory cofactors, calcium and Hop2-Mnd1. The biochemical system described herein was used to demonstrate the potential for targeting ehRad51 with two small molecule inhibitors of human RAD51. We show that 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited ehRad51 by interfering with DNA binding and attenuated encystation in Entamoeba invadens, while B02 had no effect on ehRad51 strand exchange activity. These results provide insight into the underlying mechanism of homology-directed DNA repair in E. histolytica.


Subject(s)
Entamoeba histolytica/enzymology , Homologous Recombination , Protozoan Proteins/metabolism , Rad51 Recombinase/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Adenosine Triphosphate/metabolism , Calcium/metabolism , Carrier Proteins , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Repair , Enzyme Activation , Hydrolysis , Nucleic Acid Conformation , Plasmids/genetics , Protein Binding/drug effects , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Rad51 Recombinase/genetics , Rad51 Recombinase/isolation & purification , Recombinant Proteins , Substrate Specificity
2.
PLoS One ; 10(9): e0139399, 2015.
Article in English | MEDLINE | ID: mdl-26422142

ABSTRACT

Meiosis depends on homologous recombination (HR) in most sexually reproducing organisms. Efficient meiotic HR requires the activity of the meiosis-specific recombinase, Dmc1. Previous work shows Dmc1 is expressed in Entamoeba histolytica, a eukaryotic parasite responsible for amoebiasis throughout the world, suggesting this organism undergoes meiosis. Here, we demonstrate Dmc1 protein is expressed in E. histolytica. We show that purified ehDmc1 forms presynaptic filaments and catalyzes ATP-dependent homologous DNA pairing and DNA strand exchange over at least several thousand base pairs. The DNA pairing and strand exchange activities are enhanced by the presence of calcium and the meiosis-specific recombination accessory factor, Hop2-Mnd1. In combination, calcium and Hop2-Mnd1 dramatically increase the rate of DNA strand exchange activity of ehDmc1. The biochemical system described herein provides a basis on which to better understand the role of ehDmc1 and other HR proteins in E. histolytica.


Subject(s)
Calcium/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Entamoeba histolytica/metabolism , Homologous Recombination , Protozoan Proteins/metabolism , Adenosine Triphosphate/metabolism , Animals , DNA-Binding Proteins/genetics , Mice , Protozoan Proteins/genetics
3.
PLoS One ; 7(8): e43025, 2012.
Article in English | MEDLINE | ID: mdl-22905196

ABSTRACT

Functional genomics and forward genetics seek to assign function to all known genes in a genome. Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is the causative agent of amoebic dysentery and liver abscess, and infection is prevalent in developing countries that cannot prevent its fecal-oral spread. It is responsible for considerable global morbidity and mortality. Given that the E. histolytica genome has been sequenced, it should be possible to apply genomic approaches to discover gene function. We used a genome-wide over-expression screen to uncover genes regulating an important virulence function of E. histolytica, namely phagocytosis. We developed an episomal E. histolytica cDNA over-expression library, transfected the collection of plasmids into trophozoites, and applied a high-throughput screen to identify phagocytosis mutants in the population of over-expressing cells. The screen was based on the phagocytic uptake of human red blood cells loaded with the metabolic toxin, tubercidin. Expression plasmids were isolated from trophozoites that survived exposure to tubercidin-charged erythrocytes (phagocytosis mutants), and the cDNAs were sequenced. We isolated the gene encoding profilin, a well-characterized cytoskeleton-regulating protein with a known role in phagocytosis. This supports the validity of our approach. Furthermore, we assigned a phagocytic role to several genes not previously known to function in this manner. To our knowledge, this is the first genome-wide forward genetics screen to be applied to this pathogen. The study demonstrates the power of forward genetics in revealing genes regulating virulence in E. histolytica. In addition, the study validates an E. histolytica cDNA over-expression library as a valuable tool for functional genomics.


Subject(s)
Entamoeba histolytica/genetics , Erythrocytes/parasitology , Genome , Phagocytosis/genetics , Cycloheximide/pharmacology , DNA, Complementary/metabolism , Erythrocytes/cytology , Gene Library , Genome-Wide Association Study , Green Fluorescent Proteins/metabolism , Humans , Models, Genetic , Plasmids/metabolism , Protein Synthesis Inhibitors/pharmacology , Sequence Analysis, DNA , Transfection , Tubercidin/chemistry
4.
Vaccine ; 27(4): 558-64, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19027812

ABSTRACT

Whole tumor cell vaccines have been widely studied and remain promising cancer immunotherapies. In the present study, we discovered that vaccination with irradiated mouse sarcoma S180 tumor cells stimulated robust antitumor immunity to autologous tumor cells in both syngenic and allogenic mice. The antitumor activity requires both T and B cells, but not NK cells. When a mouse lung carcinoma (TC-1) whole tumor cell vaccine was combined with the S180 vaccine, the antitumor immunity against live TC-1 tumor cells is significantly enhanced compared to a TC-1 whole cell vaccine alone. This antitumor immunity not only prevents live tumor challenge but also eradicates existing tumor cells. A similar phenomenon was also observed when S180 vaccine was combined with LL2 Lewis lung carcinoma tumor cells. Therefore, S180 vaccine may serve as an adjuvant for other whole tumor cell vaccines.


Subject(s)
Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor/radiation effects , Immunotherapy/methods , Sarcoma 180/immunology , Adjuvants, Immunologic , Animals , Cancer Vaccines/genetics , Female , Killer Cells, Natural/immunology , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms/genetics , Neoplasms/immunology , Sarcoma 180/genetics , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL