Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1345527, 2024.
Article in English | MEDLINE | ID: mdl-38863930

ABSTRACT

Background: Given its putative roles in mediating prosocial behavior, attachment bonds, and stress physiology, oxytocin modulation has been hypothesized to be a biological correlate of the salubrious effects of meditation practice. Here we investigated the effects of a month-long silent meditation retreat on changes in oxytocin, and the related hormone and vasopressin, in relation to psychosocial changes in attachment style, anxiety, personality measures, and feelings of social connectedness with fellow meditators. Methods: Plasma oxytocin and vasopressin and self-report questionnaires were measured in retreat participants (n = 28) at the beginning of, and 3 weeks into, a residential meditation retreat. Control participants (n = 34), who were similar in age, gender, and meditation experience, were also assessed across a 3-week interval. Linear mixed effects models were used to assess outcomes. Results: The retreat group showed a small but significant decrease in oxytocin compared to controls who showed no change. In the retreat group, higher openness to experience at Time 1 predicted greater reductions in oxytocin during the retreat, and lower oxytocin at Time 2 was related to stronger feelings of personal connection with fellow meditators. The changes in oxytocin were not related to attachment style or anxiety. Vasopressin decreased over time across both groups, suggesting no specific effect of retreat. Conclusion: These preliminary findings suggest that meditation training in the context of a silent residential retreat may reduce circulating levels of oxytocin. We interpret this finding from multiple theoretical perspectives, discussing key measurement limitations and proposing future study designs that may help to differentiate the effects of different meditation practices and contexts on oxytocin signaling.


Subject(s)
Meditation , Oxytocin , Vasopressins , Humans , Oxytocin/blood , Meditation/psychology , Female , Male , Adult , Middle Aged , Vasopressins/blood , Anxiety/blood , Anxiety/psychology
2.
J Exp Psychol Gen ; 152(10): 2897-2924, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37166841

ABSTRACT

Contemplative traditions have long affirmed that compassion and kindness are trainable skills. While research on meditation practice has recently flourished, the mechanisms that might engender such changes are still poorly understood. Here, we present a motivational framework to explain why meditation training should increase concern for others and modulate empathic engagement with human suffering over time. Meditation practices are conceived as tools for enacting cognitive and emotion regulatory goals that are conditioned by the underlying ethical motivation of the training-to reduce and alleviate suffering. In support of this account, we present data from a randomized, wait-list-controlled study of intensive meditation. In Study 1, we use a novel cardiovascular index to show that 3 months of meditation training can increase the motivational salience of others' suffering, as compared to the salience of threats to oneself. In Study 2, we demonstrate that training-related changes in the ability to orient attention to suffering are mediated by the dynamic regulation of distress-related physiological arousal. Finally, in Study 3, we provide exploratory evidence suggesting that meditation training may influence how human suffering is encoded in memory, leaving lasting imprints on the recollection of emotional experience. Together, our findings suggest that meditation training can strengthen the motivational relevance of others' suffering, prompting a shift from self-focused to other-focused evaluative processing. Considering meditation training from a motivational standpoint offers an important perspective for understanding how compassion can be cultivated through intentional practice. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Meditation , Humans , Meditation/psychology , Emotions/physiology , Empathy
3.
Mindfulness (N Y) ; 13(10): 2488-2506, 2022.
Article in English | MEDLINE | ID: mdl-36258902

ABSTRACT

Objectives: A core assumption of meditation training is that cognitive capacities developed during formal practice will transfer to other contexts or activities as expertise develops over time. This implies that meditation training might influence domain-general neurocognitive systems, the spontaneous activity of which should be reflected in the dynamics of the resting brain. Previous research has demonstrated that 3 months of meditation training led to reductions in EEG beta band power during mindfulness of breathing practice. The current study extends these findings to ask whether concomitant shifts in power are observed during 2 min of eyes closed rest, when participants are not explicitly engaged in formal meditation. Methods: Experienced meditation practitioners were randomly assigned to practice 3 months of focused attention meditation in a residential retreat, or to serve as waitlist controls. The waitlist controls later completed their own 3-month retreat. Permutation-based cluster analysis of 88-channel resting EEG data was used to test for spectral changes in spontaneous brain activity over the course of the retreats. Results: Longitudinal reductions in EEG power in the beta frequency range were identified and replicated across the two independent training periods. Less robust reductions were also observed in the high alpha frequency range, and in individual peak alpha frequency. These changes closely mirror those previously observed during formal mindfulness of breathing meditation practice. Conclusions: These findings suggest that the neurocognitive effects of meditation training can extend beyond the bounds of formal practice, influencing the spontaneous activity of the resting brain. Rather than serving as an invariant baseline, resting states might carry meaningful training-related effects, blurring the line between state and trait change. Supplementary Information: The online version contains supplementary material available at 10.1007/s12671-022-01974-9.

4.
Compr Psychoneuroendocrinol ; 11: 100152, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35818436

ABSTRACT

Background: Meditation retreats are characterized by intensive or concentrated periods of meditation practice, commonly undertaken in a residential setting. Although research indicates that meditation training can positively influence physical and mental health outcomes, the biological consequences of meditation retreat interventions are relatively understudied. In this study, we examined the influence of a month-long, silent meditation retreat on the expression of genes involved in epigenetic modulation and immune processes. Method: We assessed gene expression changes in experienced meditators attending a month-long Insight meditation retreat (n = 28), as compared to a community control group (n = 34) of experienced practitioners living their everyday lives. Blood samples were collected on day two of the retreat (Time 1) and again 3 weeks later (Time 2). Control participants were also assessed across a 3-week interval, during which they maintained their regular daily routines. Results: As compared to controls, retreat participants showed differential changes in the expression of several genes involved in chromatin modulation and inflammation. The most substantive finding was downregulation of the TNF pathway in retreat participants, which was not observed in controls. Conclusions: These findings indicate that meditation retreat participation may influence some of the inflammatory mechanisms involved in the development of chronic diseases, and that this style of psychosocial intervention may have therapeutic potential, particularly in experienced practitioners.

5.
Hum Brain Mapp ; 42(10): 3228-3252, 2021 07.
Article in English | MEDLINE | ID: mdl-33783922

ABSTRACT

Meditation practice is believed to foster states of mindful awareness and mental quiescence in everyday life. If so, then the cultivation of these qualities with training ought to leave its imprint on the activity of intrinsic functional brain networks. In an intensive longitudinal study, we investigated associations between meditation practitioners' experiences of felt mindful awareness and changes in the spontaneous electrophysiological dynamics of functional brain networks. Experienced meditators were randomly assigned to complete 3 months of full-time training in focused-attention meditation (during an initial intervention) or to serve as waiting-list controls and receive training second (during a later intervention). We collected broadband electroencephalogram (EEG) during rest at the beginning, middle, and end of the two training periods. Using a data-driven approach, we segmented the EEG into a time series of transient microstate intervals based on clustering of topographic voltage patterns. Participants also provided daily reports of felt mindful awareness and mental quiescence, and reported daily on four experiential qualities of their meditation practice during training. We found that meditation training led to increases in mindful qualities of awareness, which corroborate contemplative accounts of deepening mental calm and attentional focus. We also observed reductions in the strength and duration of EEG microstates across both interventions. Importantly, changes in the dynamic sequencing of microstates were associated with daily increases in felt attentiveness and serenity during training. Our results connect shifts in subjective qualities of meditative experience with the large-scale dynamics of whole brain functional EEG networks at rest.


Subject(s)
Awareness/physiology , Cerebral Cortex/physiology , Electroencephalography/methods , Meditation , Nerve Net/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult
6.
Brain Behav Immun ; 89: 256-267, 2020 10.
Article in English | MEDLINE | ID: mdl-32640286

ABSTRACT

Prior work has linked meditation practice to improvements in interference control. However, the mechanisms underlying these improvements are relatively unknown. In the context of meditation training, improvements in interference control could result eitherfrom increases in controlled attention to goal-relevant stimuli, or from reductions in automatic capture by goal-irrelevant stimuli. Moreover, few studies have linked training-related changes in attention to physiological processes, such as inflammatory activity, that are thought to influence cognitive function. This study addresses these gaps by examining associations between cognitive performance and cytokines in the context of an intensive meditation retreat. Participants were randomly assigned to complete 3 months of meditation training first, or to serve as waitlist controls. The waitlist-control participants then later completed a separate 3-month training intervention. We assessed participants' interference control with a flanker task and used computational modeling to derive component processes of controlled and automatic attention. We also collected blood samples at the beginning, middle, and end of training to quantify changes in cytokine activity. Participants who completed training evidenced better controlled attention than waitlist controls during the first retreat intervention, and controls showed significant improvements in controlled attention when they completed their own, second retreat. Importantly, inflammatory activity was inversely associated with controlled attention during both interventions. Our results suggest that practice of concentration meditation influences interference control by enhancing controlled attention to goal-relevant task elements, and that inflammatory activity relates to individual differences in controlled attention.


Subject(s)
Meditation , Humans
7.
Neuroimage ; 211: 116631, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32062082

ABSTRACT

Microstates reflect transient brain states resulting from the synchronous activity of brain networks that predominate in the broadband EEG. There has been increasing interest in how the functional organization of the brain varies across individuals, or the extent to which its spatiotemporal dynamics are state dependent. However, little research has examined within and between-person correlates of microstate temporal parameters in healthy populations. In the present study, neuroelectric activity recorded during eyes-closed rest and during simple visual fixation was segmented into a time series of transient microstate intervals. It was found that five data-driven microstate configurations explained the preponderance of topographic variance in the EEG time series of the 374 recordings (from 187 participants) included in the study. We observed that the temporal dynamics of microstates varied within individuals to a greater degree than they differed between persons, with within-person factors explaining a large portion of the variance in mean microstate duration and occurrence rate. Nevertheless, several individual differences were found to predict the temporal dynamics of microstates. Of these, age and gender were the most reliable. These findings not only suggest that the rich temporal dynamics of whole-brain neuronal networks vary considerably within individuals, but that microstates appear to differentiate persons based on trait individual differences. Rather than focusing exclusively on between-person differences in microstates as measures of brain function, researchers should turn their attention towards understanding the factors contributing to within-person variation.


Subject(s)
Affect/physiology , Aging/physiology , Attention/physiology , Cerebral Cortex/physiology , Electroencephalography , Functional Neuroimaging , Personality/physiology , Psychomotor Performance/physiology , Adult , Aged , Female , Humans , Individuality , Male , Markov Chains , Middle Aged , Young Adult
8.
J Cogn Neurosci ; 31(8): 1184-1204, 2019 08.
Article in English | MEDLINE | ID: mdl-31059348

ABSTRACT

The ability to discriminate among goal-relevant stimuli tends to diminish when detections must be made continuously over time. Previously, we reported that intensive training in shamatha (focused-attention) meditation can improve perceptual discrimination of difficult-to-detect visual stimuli [MacLean, K. A., Ferrer, E., Aichele, S. R., Bridwell, D. A., Zanesco, A. P., Jacobs, T. L., et al. Intensive meditation training improves perceptual discrimination and sustained attention. Psychological Science, 21, 829-839, 2010]. Here we extend these findings to examine how discrimination difficulty and meditation training interact to modulate event-related potentials of attention and perceptual processing during vigilance. Training and wait-list participants completed a continuous performance task at the beginning, middle, and end of two 3-month meditation interventions. In the first intervention (Retreat 1), the continuous performance task target was adjusted across assessments to match training-related changes in participants' perceptual capacity. In the second intervention (Retreat 2), the target was held constant across training, irrespective of changes in discrimination capacity. No training effects were observed in Retreat 1, whereas Retreat 2 was associated with changes in the onset of early sensory signals and an attenuation of within-task decrements at early latencies. In addition, changes at later stimulus processing stages were directly correlated with improvements in perceptual threshold across the second intervention. Overall, these findings demonstrate that improvements in perceptual discrimination can modulate electrophysiological markers of perceptual processing and attentional control during sustained attention, but likely only under conditions where an individual's discrimination capacity is allowed to exceed the demand imposed by the difficulty of a visual target. These results contribute to basic understanding of the dependence of perceptual processing and attentional control to contextual demands and their susceptibility to directed mental training.


Subject(s)
Attention/physiology , Discrimination, Psychological/physiology , Evoked Potentials/physiology , Meditation , Practice, Psychological , Psychomotor Performance/physiology , Visual Perception/physiology , Adult , Aged , Electroencephalography , Female , Humans , Male , Middle Aged , Young Adult
9.
Curr Opin Psychol ; 28: 238-244, 2019 08.
Article in English | MEDLINE | ID: mdl-30878004

ABSTRACT

Contemporary investigations of mindfulness and meditation have predominately emphasized the short-term effects of brief inductions or standardized, multi-week interventions in people with little to no prior meditation experience. Considerably less is known about the effects of continued or intensive meditation practice as proficiency and expertise are acquired over time. In this article, we describe the form and function of residential retreats, an understudied class of meditation intervention that holds promise for bridging this gap in the empirical literature. We outline a number of design features that distinguish retreats from other meditation-based interventions, and highlight their utility for informing functional and developmental perspectives on meditation, cognition, health, and well-being.


Subject(s)
Meditation/methods , Mindfulness/methods , Residential Treatment , Humans
11.
Brain Behav Immun ; 70: 233-245, 2018 05.
Article in English | MEDLINE | ID: mdl-29518528

ABSTRACT

A growing body of evidence suggests that meditation training may have a range of salubrious effects, including improved telomere regulation. Telomeres and the enzyme telomerase interact with a variety of molecular components to regulate cell-cycle signaling cascades, and are implicated in pathways linking psychological stress to disease. We investigated the effects of intensive meditation practice on these biomarkers by measuring changes in telomere length (TL), telomerase activity (TA), and telomere-related gene (TRG) expression during a 1-month residential Insight meditation retreat. Multilevel analyses revealed an apparent TL increase in the retreat group, compared to a group of experienced meditators, similarly comprised in age and gender, who were not on retreat. Moreover, personality traits predicted changes in TL, such that retreat participants highest in neuroticism and lowest in agreeableness demonstrated the greatest increases in TL. Changes observed in TRGs further suggest retreat-related improvements in telomere maintenance, including increases in Gar1 and HnRNPA1, which encode proteins that bind telomerase RNA and telomeric DNA. Although no group-level changes were observed in TA, retreat participants' TA levels at post-assessment were inversely related to several indices of retreat engagement and prior meditation experience. Neuroticism also predicted variation in TA across retreat. These findings suggest that meditation training in a retreat setting may have positive effects on telomere regulation, which are moderated by individual differences in personality and meditation experience. (ClinicalTrials.gov #NCT03056105).


Subject(s)
Meditation/psychology , Telomere Homeostasis/physiology , Telomere/physiology , Adult , Female , Humans , Male , Meditation/methods , Neuroticism/physiology , Personality/genetics , Personality/physiology , Stress, Psychological/metabolism , Telomerase/analysis
12.
Emotion ; 15(6): 775-90, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25938614

ABSTRACT

Meditation practices purportedly help people develop focused and sustained attention, cultivate feelings of compassionate concern for self and others, and strengthen motivation to help others who are in need. We examined the impact of 3 months of intensive meditative training on emotional responses to scenes of human suffering. Sixty participants were assigned randomly to either a 3-month intensive meditation retreat or a wait-list control group. Training consisted of daily practice in techniques designed to improve attention and enhance compassionate regard for others. Participants viewed film scenes depicting human suffering at pre- and posttraining laboratory assessments, during which both facial and subjective measures of emotion were collected. At post-assessment, training group participants were more likely than controls to show facial displays of sadness. Trainees also showed fewer facial displays of rejection emotions (anger, contempt, disgust). The groups did not differ on the likelihood or frequency of showing these emotions prior to training. Self-reported sympathy--but not sadness or distress--predicted sad behavior and inversely predicted displays of rejection emotions in trainees only. These results suggest that intensive meditation training encourages emotional responses to suffering characterized by enhanced sympathetic concern for, and reduced aversion to, the suffering of others.


Subject(s)
Emotions , Empathy , Meditation/methods , Meditation/psychology , Psychological Trauma , Adult , Affect , Aged , Anger , Attention , Female , Humans , Male , Middle Aged , Self Report , Young Adult
13.
Neuroimage ; 114: 88-104, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25862265

ABSTRACT

Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography/methods , Meditation , Models, Neurological , Thalamus/physiology , Adult , Alpha Rhythm , Beta Rhythm , Computer Simulation , Female , Humans , Male , Middle Aged , Neural Pathways/physiology
14.
Front Hum Neurosci ; 7: 566, 2013.
Article in English | MEDLINE | ID: mdl-24065902

ABSTRACT

Various forms of mental training have been shown to improve performance on cognitively demanding tasks. Individuals trained in meditative practices, for example, show generalized improvements on a variety of tasks assessing attentional performance. A central claim of this training, derived from contemplative traditions, posits that improved attentional performance is accompanied by subjective increases in the stability and clarity of concentrative engagement with one's object of focus, as well as reductions in felt cognitive effort as expertise develops. However, despite frequent claims of mental stability following training, the phenomenological correlates of meditation-related attentional improvements have yet to be characterized. In a longitudinal study, we assessed changes in executive control (performance on a 32-min response inhibition task) and retrospective reports of task engagement (concentration, motivation, and effort) following one month of intensive, daily Vipassana meditation training. Compared to matched controls, training participants exhibited improvements in response inhibition accuracy and reductions in reaction time variability. The training group also reported increases in concentration, but not effort or motivation, during task performance. Critically, increases in concentration predicted improvements in reaction time variability, suggesting a link between the experience of concentrative engagement and ongoing fluctuations in attentional stability. By incorporating experiential measures of task performance, the present study corroborates phenomenological accounts of stable, clear attentional engagement with the object of meditative focus following extensive training. These results provide initial evidence that meditation-related changes in felt experience accompany improvements in adaptive, goal-directed behavior, and that such shifts may reflect accurate awareness of measurable changes in performance.

15.
Health Psychol ; 32(10): 1104-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23527522

ABSTRACT

OBJECTIVE: Cognitive perseverations that include worry and rumination over past or future events may prolong cortisol release, which in turn may contribute to predisease pathways and adversely affect physical health. Meditation training may increase self-reported mindfulness, which has been linked to reductions in cognitive perseverations. However, there are no reports that directly link self-reported mindfulness and resting cortisol output. Here, the authors investigate this link. METHODS: In an observational study, we measured self-reported mindfulness and p.m. cortisol near the beginning and end of a 3-month meditation retreat (N = 57). RESULTS: Mindfulness increased from pre- to post-retreat, F(1, 56) = 36.20, p < .001. Cortisol did not significantly change. However, mindfulness was inversely related to p.m. cortisol at pre-retreat, r(53) = -.31, p < .05, and post-retreat, r(53) = -.30, p < .05, controlling for age and body mass index. Pre to postchange in mindfulness was associated with pre to postchange in p.m. cortisol, ß = -.37, t(49) = 2.30, p < .05: Larger increases in mindfulness were associated with decreases in p.m. cortisol, whereas smaller increases (or slight decreases) in mindfulness were associated with an increase in p.m. cortisol. CONCLUSIONS: These data suggest a relation between self-reported mindfulness and resting output of the hypothalamic-pituitary-adrenal system. Future work should aim to replicate this finding in a larger cohort and determine stronger inference about causality by using experimental designs that include control-group conditions.


Subject(s)
Hydrocortisone/metabolism , Meditation , Mind-Body Relations, Metaphysical , Mindfulness , Stress, Psychological/therapy , Adult , Aged , Anxiety , Body Mass Index , Female , Humans , Male , Middle Aged , Regression Analysis , Saliva/metabolism , Self Report , Stress, Psychological/metabolism , Surveys and Questionnaires , Thinking , Treatment Outcome , Young Adult
16.
Front Hum Neurosci ; 6: 256, 2012.
Article in English | MEDLINE | ID: mdl-22973218

ABSTRACT

The capacity to focus one's attention for an extended period of time can be increased through training in contemplative practices. However, the cognitive processes engaged during meditation that support trait changes in cognition are not well characterized. We conducted a longitudinal wait-list controlled study of intensive meditation training. Retreat participants practiced focused attention (FA) meditation techniques for three months during an initial retreat. Wait-list participants later undertook formally identical training during a second retreat. Dense-array scalp-recorded electroencephalogram (EEG) data were collected during 6 min of mindfulness of breathing meditation at three assessment points during each retreat. Second-order blind source separation, along with a novel semi-automatic artifact removal tool (SMART), was used for data preprocessing. We observed replicable reductions in meditative state-related beta-band power bilaterally over anteriocentral and posterior scalp regions. In addition, individual alpha frequency (IAF) decreased across both retreats and in direct relation to the amount of meditative practice. These findings provide evidence for replicable longitudinal changes in brain oscillatory activity during meditation and increase our understanding of the cortical processes engaged during meditation that may support long-term improvements in cognition.

17.
Emotion ; 11(2): 299-312, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21500899

ABSTRACT

We examined the impact of training-induced improvements in self-regulation, operationalized in terms of response inhibition, on longitudinal changes in self-reported adaptive socioemotional functioning. Data were collected from participants undergoing 3 months of intensive meditation training in an isolated retreat setting (Retreat 1) and a wait-list control group that later underwent identical training (Retreat 2). A 32-min response inhibition task (RIT) was designed to assess sustained self-regulatory control. Adaptive functioning (AF) was operationalized as a single latent factor underlying self-report measures of anxious and avoidant attachment, mindfulness, ego resilience, empathy, the five major personality traits (extroversion, agreeableness, conscientiousness, neuroticism, and openness to experience), difficulties in emotion regulation, depression, anxiety, and psychological well-being. Participants in Retreat 1 improved in RIT performance and AF over time whereas the controls did not. The control participants later also improved on both dimensions during their own retreat (Retreat 2). These improved levels of RIT performance and AF were sustained in follow-up assessments conducted approximately 5 months after the training. Longitudinal dynamic models with combined data from both retreats showed that improvement in RIT performance during training influenced the change in AF over time, which is consistent with a key claim in the Buddhist literature that enhanced capacity for self-regulation is an important precursor of changes in emotional well-being.


Subject(s)
Inhibition, Psychological , Meditation/psychology , Social Adjustment , Adaptation, Psychological , Adult , Aged , Emotional Intelligence , Empathy , Female , Humans , Male , Middle Aged , Personality Inventory , Psychological Tests , Surveys and Questionnaires , Young Adult
18.
Psychoneuroendocrinology ; 36(5): 664-81, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21035949

ABSTRACT

BACKGROUND: Telomerase activity is a predictor of long-term cellular viability, which decreases with chronic psychological distress (Epel et al., 2004). Buddhist traditions claim that meditation decreases psychological distress and promotes well-being (e.g., Dalai Lama and Cutler, 2009). Therefore, we investigated the effects of a 3-month meditation retreat on telomerase activity and two major contributors to the experience of stress: Perceived Control (associated with decreased stress) and Neuroticism (associated with increased subjective distress). We used mediation models to test whether changes in Perceived Control and Neuroticism explained meditation retreat effects on telomerase activity. In addition, we investigated whether two qualities developed by meditative practice, increased Mindfulness and Purpose in Life, accounted for retreat-related changes in the two stress-related variables and in telomerase activity. METHODS: Retreat participants (n=30) meditated for ∼6 h daily for 3 months and were compared with a wait-list control group (n=30) matched for age, sex, body mass index, and prior meditation experience. Retreat participants received instruction in concentrative meditation techniques and complementary practices used to cultivate benevolent states of mind (Wallace, 2006). Psychological measures were assessed pre- and post-retreat. Peripheral blood mononuclear cell samples were collected post-retreat for telomerase activity. Because there were clear, a priori hypotheses, 1-tailed significance criteria were used throughout. RESULTS: Telomerase activity was significantly greater in retreat participants than in controls at the end of the retreat (p<0.05). Increases in Perceived Control, decreases in Neuroticism, and increases in both Mindfulness and Purpose in Life were greater in the retreat group (p<0.01). Mediation analyses indicated that the effect of the retreat on telomerase was mediated by increased Perceived Control and decreased Neuroticism. In turn, changes in Perceived Control and Neuroticism were both partially mediated by increased Mindfulness and Purpose in Life. Additionally, increases in Purpose in Life directly mediated the telomerase group difference, whereas increases in Mindfulness did not. CONCLUSIONS: This is the first study to link meditation and positive psychological change with telomerase activity. Although we did not measure baseline telomerase activity, the data suggest that increases in perceived control and decreases in negative affectivity contributed to an increase in telomerase activity, with implications for telomere length and immune cell longevity. Further, Purpose in Life is influenced by meditative practice and directly affects both perceived control and negative emotionality, affecting telomerase activity directly as well as indirectly.


Subject(s)
Immune System/metabolism , Meditation/psychology , Physical Education and Training/methods , Stress, Psychological/therapy , Telomerase/metabolism , Adult , Aged , Anxiety/immunology , Anxiety/metabolism , Anxiety/psychology , Anxiety/therapy , Female , Humans , Immune System/enzymology , Male , Meditation/methods , Middle Aged , Stress, Psychological/immunology , Stress, Psychological/metabolism , Stress, Psychological/psychology , Treatment Outcome , Young Adult
19.
Psychol Sci ; 21(6): 829-39, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20483826

ABSTRACT

The ability to focus one's attention underlies success in many everyday tasks, but voluntary attention cannot be sustained for extended periods of time. In the laboratory, sustained-attention failure is manifest as a decline in perceptual sensitivity with increasing time on task, known as the vigilance decrement. We investigated improvements in sustained attention with training (approximately 5 hr/day for 3 months), which consisted of meditation practice that involved sustained selective attention on a chosen stimulus (e.g., the participant's breath). Participants were randomly assigned either to receive training first (n = 30) or to serve as waiting-list controls and receive training second (n = 30). Training produced improvements in visual discrimination that were linked to increases in perceptual sensitivity and improved vigilance during sustained visual attention. Consistent with the resource model of vigilance, these results suggest that perceptual improvements can reduce the resource demand imposed by target discrimination and thus make it easier to sustain voluntary attention.


Subject(s)
Attention , Discrimination, Psychological , Meditation/psychology , Adult , Aged , Arousal , Female , Humans , Male , Middle Aged , Visual Perception , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...