Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B ; 63(Pt 6): 912-25, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18004046

ABSTRACT

A 1:1 co-crystal of rac-trans-1,2-C(6)H(10)(OH)(2) and (C(6)H(5))(3)PO has been found that is unusual because there are no strong interactions between the two kinds of molecules, which are segregated into layers. Furthermore, neither pure rac-1,2-cyclohexanediol (CHD) nor pure triphenylphosphine oxide (TPPO) has any obvious packing problem that would make the formation of inclusion complexes likely. The TPPO layers are very much like those found in two of the four known polymorphs of pure TPPO. The hydrogen-bonded ribbons of CHD are similar to those found in other vic-diol crystals. The co-crystals are triclinic (space group P\overline 1), but the deviations from monoclinic symmetry (space group C2/c) are small. The magnitudes of those deviations depend on the solvent from which the crystal is grown; the deviations are largest for crystals grown from acetone, smallest for crystals grown from toluene, and intermediate for crystals grown from ethanol. The deviations arise from incomplete enantiomeric disorder of the R,R and S,S diols; this disorder is not required by symmetry in either space group, but occupancy factors are nearly 0.50 when the structure is refined as monoclinic. When the structure is refined as triclinic the deviations of the occupancy factors from 0.50 mirror the deviations from monoclinic symmetry because information about the partial R,R/S,S ordering is transmitted from one diol layer to the next through the very pseudosymmetric TPPO layer. Analyses suggest individual CHD layers are at least mostly ordered. The degree of order seems to be established at the time the crystal is grown and is unlikely to change with heating or cooling. Thermal data suggest the existence of the co-crystal is a consequence of kinetic rather than thermodynamic factors.

2.
Acta Crystallogr B ; 63(Pt 3): 433-47, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17507757

ABSTRACT

The phases of 1,2,3,4-tetrahydro-2,3-naphthalenediol (or 2,3-tetralindiol) and of 1,2-cyclohexanediol have been investigated. The structure of a very stable 1:1 compound (or co-crystal) of the cis and trans isomers of 2,3-tetralindiol, the existence of which has been known for nearly a century, has finally been determined. No evidence of any analogous compound between the cis and trans isomers of 1,2-cyclohexanediol has been found. The formation of solid-state compounds of stereoisomers is rare; it probably occurs only if the crystal packing of at least one of the isomers is unfavorable, e.g. if at least one of the melting points is lower than expected. Compound formation is usually unlikely because of the difficulty of simultaneously optimizing the translational spacings for both isomers, but that packing problem is avoided in the cis/trans compound of 2,3-tetralindiol because the two isomers are in very similar environments. In the structures of the individual 2,3-tetralindiol isomers there are clear conflicts between the competing packing requirements of the 1,2-diol moiety and the aromatic ring system; these conflicts are resolved better in the co-crystal than in the structures of the individual isomers.

SELECTION OF CITATIONS
SEARCH DETAIL
...