Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 581: 113338, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31201789

ABSTRACT

Stopped-flow spectroscopy is a powerful method for measuring very fast biological and chemical reactions. The technique however is often limited by the volumes of reactants needed to load the system. Here we present a simple adaptation of commercial stopped-flow system that reduces the volume needed by a factor of 4 to ≈120 µl. After evaluation the volume requirements of the system we show that many standard myosin based assays can be performed using <100 µg of myosin. This adaptation both reduces the volume and therefore mass of protein required and also produces data of similar quality to that produced using the standard set up. The 100 µg of myosin required for these assays is less than that which can be isolated from 100 mg of muscle tissue. With this reduced quantity of myosin, assays using biopsy samples become possible. This will allow assays to be used to assist diagnoses, to examine the effects of post translational modifications on muscle proteins and to test potential therapeutic drugs using patient derived samples.


Subject(s)
Myosins/analysis , Spectrum Analysis , Animals , Humans , Rabbits
2.
J Am Chem Soc ; 140(35): 11112-11124, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30080973

ABSTRACT

The mechanism of CF3 transfer from R3SiCF3 (R = Me, Et, iPr) to ketones and aldehydes, initiated by M+X- (<0.004 to 10 mol %), has been investigated by analysis of kinetics (variable-ratio stopped-flow NMR and IR), 13C/2H KIEs, LFER, addition of ligands (18-c-6, crypt-222), and density functional theory calculations. The kinetics, reaction orders, and selectivity vary substantially with reagent (R3SiCF3) and initiator (M+X-). Traces of exogenous inhibitors present in the R3SiCF3 reagents, which vary substantially in proportion and identity between batches and suppliers, also affect the kinetics. Some reactions are complete in milliseconds, others take hours, and others stall before completion. Despite these differences, a general mechanism has been elucidated in which the product alkoxide and CF3- anion act as chain carriers in an anionic chain reaction. Silyl enol ether generation competes with 1,2-addition and involves protonation of CF3- by the α-C-H of the ketone and the OH of the enol. The overarching mechanism for trifluoromethylation by R3SiCF3, in which pentacoordinate siliconate intermediates are unable to directly transfer CF3- as a nucleophile or base, rationalizes why the turnover rate (per M+X- initiator) depends on the initial concentration (but not identity) of X-, the identity (but not concentration) of M+, the identity of the R3SiCF3 reagent, and the carbonyl/R3SiCF3 ratio. It also rationalizes which R3SiCF3 reagent effects the most rapid trifluoromethylation, for a specific M+X- initiator.

3.
J Am Chem Soc ; 139(37): 13156-13165, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28823150

ABSTRACT

Pioneering studies by Kuivila, published more than 50 years ago, suggested ipso protonation of the boronate as the mechanism for base-catalyzed protodeboronation of arylboronic acids. However, the study was limited to UV spectrophotometric analysis under acidic conditions, and the aqueous association constants (Ka) were estimated. By means of NMR, stopped-flow IR, and quenched-flow techniques, the kinetics of base-catalyzed protodeboronation of 30 different arylboronic acids has now been determined at pH > 13 in aqueous dioxane at 70 °C. Included in the study are all 20 isomers of C6HnF(5-n)B(OH)2 with half-lives spanning 9 orders of magnitude: <3 ms to 6.5 months. In combination with pH-rate profiles, pKa and ΔS⧧ values, kinetic isotope effects (2H, 10B, 13C), linear free-energy relationships, and density functional theory calculations, we have identified a mechanistic regime involving unimolecular heterolysis of the boronate competing with concerted ipso protonation/C-B cleavage. The relative Lewis acidities of arylboronic acids do not correlate with their protodeboronation rates, especially when ortho substituents are present. Notably, 3,5-dinitrophenylboronic acid is orders of magnitude more stable than tetra- and pentafluorophenylboronic acids but has a similar pKa.

4.
J Am Assoc Lab Anim Sci ; 49(3): 316-22, 2010 May.
Article in English | MEDLINE | ID: mdl-20587163

ABSTRACT

We and others frequently have noted serum potassium levels of 8.0 +/- 0.85 mEq/L or greater in laboratory mice; this concentration has even been published as the upper limit of a 'normal' reference range. However, if bone fide, this potassium concentration would be incompatible with life in all species. We investigated conditions frequently encountered in the research setting to distinguish artifactual from true hyperkalemia. Variables evaluated included site of collection, time allowed for clot formation before serum separation, time elapsed between collection and analysis of samples collected in a serum separator tube, precollection method of anesthesia, and euthanasia technique. Serum potassium was measured from 75 C57BL/6NTac 10-wk-old female mice and divided into at least 5 mice per variable. Animals were euthanized by exsanguination immediately after terminal CO2 or ketamine-xylazine (KX) administration. Mice euthanized with CO2 had higher mean serum potassium (7.0 +/- 0.5 mEq/L) and range serum potassium (6.0 to 8.1 mEq/L) than did KX-treated mice. CO2 inhalation resulted in significantly lower blood pH (6.9 +/- 0.1), higher pCO2 (153.3 +/- 38.8 mm Hg), and higher lactate levels (3.9 +/- 0.9 mmol/L) than did KX anesthesia followed by exsanguination. These results suggest that antemortem respiratory acidosis from CO2 administration causes artifactual hyperkalemia in mice. Therefore, blood collection under KX anesthesia is preferable over CO2 inhalation to obtain accurate potassium values from mice.


Subject(s)
Carbon Dioxide/toxicity , Euthanasia, Animal/methods , Mice/blood , Potassium/blood , Anesthesia/methods , Anesthesia/veterinary , Animals , Carbon Dioxide/administration & dosage , Female , Hematologic Tests/methods , Hematologic Tests/veterinary , Hyperkalemia/etiology , Hyperkalemia/veterinary , Ketamine/pharmacology , Mice, Inbred C57BL , Rodent Diseases/etiology , Xylazine/pharmacology
5.
Plant Physiol ; 144(4): 1753-62, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17545508

ABSTRACT

During angiosperm reproduction, one of the two synergid cells within the female gametophyte undergoes cell death prior to fertilization. The pollen tube enters the female gametophyte by growing into the synergid cell that undergoes cell death and releases its two sperm cells within the degenerating synergid cytoplasm to effect double fertilization. In Arabidopsis (Arabidopsis thaliana) and many other species, synergid cell death is dependent upon pollination. However, the mechanism by which the pollen tube causes synergid cell death is not understood. As a first step toward understanding this mechanism, we defined the temporal relationship between pollen tube arrival at the female gametophyte and synergid cell death in Arabidopsis. Using confocal laser scanning microscopy, light microscopy, transmission electron microscopy, and real-time observation of these two events in vitro, we demonstrate that synergid cell death initiates after the pollen tube arrives at the female gametophyte but before pollen tube discharge. Our results support a model in which a signaling cascade triggered by pollen tube-synergid cell contact induces synergid cell death in Arabidopsis.


Subject(s)
Arabidopsis/physiology , Cell Death/physiology , Pollen Tube/physiology , Arabidopsis/ultrastructure , Microscopy, Electron, Transmission , Pollen Tube/ultrastructure , Time Factors
6.
Plant Cell ; 18(6): 1396-411, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16698946

ABSTRACT

To identify molecular mechanisms controlling vein patterns, we analyzed scarface (sfc) mutants. sfc cotyledon and leaf veins are largely fragmented, unlike the interconnected networks in wild-type plants. SFC encodes an ADP ribosylation factor GTPase activating protein (ARF-GAP), a class with well-established roles in vesicle trafficking regulation. Quadruple mutants of SCF and three homologs (ARF-GAP DOMAIN1, 2, and 4) showed a modestly enhanced vascular phenotype. Genetic interactions between sfc and pinoid and between sfc and gnom suggest a possible function for SFC in trafficking of auxin efflux regulators. Genetic analyses also revealed interaction with cotyledon vascular pattern2, suggesting that lipid-based signals may underlie some SFC ARF-GAP functions. To assess possible roles for SFC in auxin transport, we analyzed sfc roots, which showed exaggerated responses to exogenous auxin and higher auxin transport capacity. To determine whether PIN1 intracellular trafficking was affected, we analyzed PIN1:green fluorescent protein (GFP) dynamics using confocal microscopy in sfc roots. We found normal PIN1:GFP localization at the apical membrane of root cells, but treatment with brefeldin A resulted in PIN1 accumulating in smaller and more numerous compartments than in the wild type. These data suggest that SFC is required for normal intracellular transport of PIN1 from the plasma membrane to the endosome.


Subject(s)
ADP-Ribosylation Factors/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , GTPase-Activating Proteins/metabolism , Indoleacetic Acids/metabolism , Plant Leaves/physiology , ADP-Ribosylation Factors/chemistry , ADP-Ribosylation Factors/genetics , Alleles , Amino Acid Sequence , Arabidopsis/anatomy & histology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Biological Transport , Cotyledon/cytology , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Membrane Transport Proteins/metabolism , Molecular Sequence Data , Mutation/genetics , Plant Leaves/cytology , Plant Roots/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...