Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G500-G512, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34494462

ABSTRACT

Mouse and human data implicate the NOD1 and NOD2 sensors of the intestinal microbiome and the associated signal transduction via the receptor interacting protein kinase 2 (RIPK2) as a potential key signaling node for the development of inflammatory bowel disease (IBD) and an attractive target for pharmacological intervention. The TRUC mouse model of IBD was strongly indicated for evaluating RIPK2 antagonism for its effect on intestinal inflammation based on previous knockout studies with NOD1, NOD2, and RIPK2. We identified and profiled the BI 706039 molecule as a potent and specific functional inhibitor of both human and mouse RIPK2 and with favorable pharmacokinetic properties. We dosed BI 706039 in the spontaneous TRUC mouse model from age 28 to 56 days. Oral, daily administration of BI 706039 caused dose-responsive and significant improvement in colonic histopathological inflammation, colon weight, and terminal levels of protein-normalized fecal lipocalin (all P values <0.001). These observations correlated with dose responsively increasing systemic levels of the BI 706039 compound, splenic molecular target engagement of RIPK2, and modulation of inflammatory genes in the colon. This demonstrates that a relatively low oral dose of a potent and selective RIPK2 inhibitor can modulate signaling in the intestinal immune system and significantly improve disease associated intestinal inflammation.NEW & NOTEWORTHY The RIPK2 kinase at the apex of microbiome immunosensing is an attractive target for pharmacological intervention. A low oral dose of a RIPK2 inhibitor leads to significantly improved intestinal inflammation in the murine TRUC model of colitis. A selective and potent inhibitor of the RIPK2 kinase may represent a new class of therapeutics that target microbiome-driven signaling for the treatment of IBD.


Subject(s)
Colitis, Ulcerative/drug therapy , Colon/drug effects , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Animals , Biological Availability , Cells, Cultured , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Colon/enzymology , Colon/pathology , Crohn Disease/enzymology , Crohn Disease/pathology , Cytokines/genetics , Cytokines/metabolism , DNA-Binding Proteins/genetics , Disease Models, Animal , Feces/chemistry , Humans , Inflammation Mediators/metabolism , Lipocalins/metabolism , Mice, Inbred BALB C , Mice, Knockout , Models, Biological , Monocytes/drug effects , Monocytes/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , T-Box Domain Proteins/genetics
2.
Nature ; 581(7808): 316-322, 2020 05.
Article in English | MEDLINE | ID: mdl-32433612

ABSTRACT

Toll-like receptors (TLRs) have a crucial role in the recognition of pathogens and initiation of immune responses1-3. Here we show that a previously uncharacterized protein encoded by CXorf21-a gene that is associated with systemic lupus erythematosus4,5-interacts with the endolysosomal transporter SLC15A4, an essential but poorly understood component of the endolysosomal TLR machinery also linked to autoimmune disease4,6-9. Loss of this type-I-interferon-inducible protein, which we refer to as 'TLR adaptor interacting with SLC15A4 on the lysosome' (TASL), abrogated responses to endolysosomal TLR agonists in both primary and transformed human immune cells. Deletion of SLC15A4 or TASL specifically impaired the activation of the IRF pathway without affecting NF-κB and MAPK signalling, which indicates that ligand recognition and TLR engagement in the endolysosome occurred normally. Extensive mutagenesis of TASL demonstrated that its localization and function relies on the interaction with SLC15A4. TASL contains a conserved pLxIS motif (in which p denotes a hydrophilic residue and x denotes any residue) that mediates the recruitment and activation of IRF5. This finding shows that TASL is an innate immune adaptor for TLR7, TLR8 and TLR9 signalling, revealing a clear mechanistic analogy with the IRF3 adaptors STING, MAVS and TRIF10,11. The identification of TASL as the component that links endolysosomal TLRs to the IRF5 transcription factor via SLC15A4 provides a mechanistic explanation for the involvement of these proteins in systemic lupus erythematosus12-14.


Subject(s)
Interferon Regulatory Factors/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lysosomes/metabolism , Membrane Transport Proteins/metabolism , Nerve Tissue Proteins/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , Toll-Like Receptor 9/metabolism , Amino Acid Motifs , Animals , Female , Humans , Immunity, Innate , Interferon Type I/immunology , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Lupus Erythematosus, Systemic/metabolism , Male , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/genetics , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Protein Binding , Signal Transduction
3.
PLoS One ; 9(6): e100883, 2014.
Article in English | MEDLINE | ID: mdl-24967665

ABSTRACT

GPBAR1 is a G protein-coupled receptor that is activated by certain bile acids and plays an important role in the regulation of bile acid synthesis, lipid metabolism, and energy homeostasis. Recent evidence suggests that GPBAR1 may also have important effects in reducing the inflammatory response through its expression on monocytes and macrophages. To further understand the role of GPBAR1 in inflammation, we generated a novel, selective, proprietary GPBAR1 agonist and tested its effectiveness at reducing monocyte and macrophage activation in vitro and in vivo. We have used this agonist, together with previously described agonists to study agonism of GPBAR1, and shown that they can all induce cAMP and reduce TLR activation-induced cytokine production in human monocytes and monocyte-derived macrophages in vitro. Additionally, through the usage of RNA sequencing (RNA-Seq), we identified a select set of genes that are regulated by GPBAR1 agonism during LPS activation. To further define the in vivo role of GPBAR1 in inflammation, we assessed GPBAR1 expression and found high levels on circulating mouse monocytes. Agonism of GPBAR1 reduced LPS-induced cytokine production in mouse monocytes ex vivo and serum cytokine levels in vivo. Agonism of GPBAR1 also had profound effects in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis, where monocytes play an important role. Mice treated with the GPBAR1 agonist exhibited a significant reduction in the EAE clinical score which correlated with reduced monocyte and microglial activation and reduced trafficking of monocytes and T cells into the CNS. These data confirm the importance of GPBAR1 in controlling monocyte and macrophage activation in vivo and support the rationale for selective agonists of GPBAR1 in the treatment of inflammatory diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Myeloid Cells/drug effects , Myeloid Cells/immunology , Receptors, G-Protein-Coupled/agonists , Animals , CHO Cells , Cluster Analysis , Cricetulus , Cyclic AMP , Cytokines/biosynthesis , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Myeloid Cells/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...