Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biol ; 42(4): e0050521, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35274990

ABSTRACT

One of the primary mechanisms of post-transcriptional gene regulation is the modulation of RNA stability. We recently discovered that LINC00675, a transcript annotated as a long noncoding RNA (lncRNA), is transcriptionally regulated by FOXA1 and encodes a highly conserved small protein that localizes to the endoplasmic reticulum, hence renamed as FORCP (FOXA1-regulated conserved small protein). Here, we show that the endogenous FORCP transcript is rapidly degraded and rendered unstable as a result of 3'UTR-mediated degradation. Surprisingly, although the FORCP transcript is a canonical nonsense-mediated decay (NMD) and microRNA (miRNA) target, we found that it is not degraded by NMD or miRNAs. Targeted deletion of an evolutionarily conserved region in the FORCP 3'UTR using CRISPR/Cas9 significantly increased the stability of the FORCP transcript. Interestingly, this region requires the presence of an immediate downstream 55-nt-long sequence for transcript stability regulation. Functionally, colorectal cancer cells lacking this conserved region expressed from the endogenous FORCP locus displayed decreased proliferation and clonogenicity. These data demonstrate that the FORCP transcript is destabilized via conserved elements within its 3'UTR and emphasize the need to interrogate the function of a given 3'UTR in its native context.


Subject(s)
RNA, Long Noncoding , 3' Untranslated Regions/genetics , AU Rich Elements , Gene Expression Regulation , RNA Stability/genetics , RNA, Long Noncoding/genetics
2.
Nat Commun ; 12(1): 7318, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916494

ABSTRACT

Proteasome substrate receptor hRpn13 is a promising anti-cancer target. By integrated in silico and biophysical screening, we identified a chemical scaffold that binds hRpn13 with non-covalent interactions that mimic the proteasome and a weak electrophile for Michael addition. hRpn13 Pru domain binds proteasomes and ubiquitin whereas its DEUBAD domain binds deubiquitinating enzyme UCHL5. NMR revealed lead compound XL5 to interdigitate into a hydrophobic pocket created by lateral movement of a Pru ß-hairpin with an exposed end for Proteolysis Targeting Chimeras (PROTACs). Implementing XL5-PROTACs as chemical probes identified a DEUBAD-lacking hRpn13 species (hRpn13Pru) present naturally with cell type-dependent abundance. XL5-PROTACs preferentially target hRpn13Pru, causing its ubiquitination. Gene-editing and rescue experiments established hRpn13 requirement for XL5-PROTAC-triggered apoptosis. These data establish hRpn13 as an anti-cancer target for multiple myeloma and introduce an hRpn13-targeting scaffold that can be optimized for preclinical trials against hRpn13Pru-producing cancer types.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Multiple Myeloma/metabolism , Ubiquitination , Apoptosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Multiple Myeloma/genetics , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...