Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Technol ; 55(17): 11767-11774, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34410108

ABSTRACT

Tire tread wear particles (TWP) are increasingly recognized as a global pollutant of surface waters, but their impact on biota in receiving waters is rarely addressed. In the developed U.S. Pacific Northwest, acute mortality of adult coho salmon (Oncorhynchus kisutch) follows rain events and is correlated with roadway density. Roadway runoff experimentally triggers behavioral symptoms and associated changes in blood indicative of cardiorespiratory distress prior to death. Closely related chum salmon (O. keta) lack an equivalent response. Acute mortality of juvenile coho was recently experimentally linked to a transformation product of a tire-derived chemical. We evaluated whether TWP leachate is sufficient to trigger the acute mortality syndrome in adult coho salmon. We characterized the acute response of adult coho and chum salmon to TWP leachate (survival, behavior, blood physiology) and compared it with that caused by roadway runoff. TWP leachate was acutely lethal to coho at concentrations similar to roadway runoff, with the same behaviors and blood parameters impacted. As with runoff, chum salmon appeared insensitive to TWP leachate at concentrations lethal to coho. Our results confirm that environmentally relevant TWP exposures cause acute mortalities of a keystone aquatic species.


Subject(s)
Environmental Pollutants , Oncorhynchus keta , Oncorhynchus kisutch , Animals , Rain , Water
2.
Environ Sci Technol ; 55(14): 9968-9978, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34252275

ABSTRACT

The industrial waterway in Portland Harbor, Oregon, is a migration corridor for a distinct population segment of Chinook Salmon (Upper Willamette River) currently protected by the U.S. Endangered Species Act. Juveniles are exposed to a suite of contaminants during outmigration including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethanes. We collected natural origin subyearling Chinook salmon from sites in and around the industrial harbor to evaluate growth (otolith microstructural analysis) in relation to measured chemical concentrations in tissue. A reduced growth rate was associated with higher tissue contaminant concentrations, particularly mixtures represented by PAHs and certain PCBs, which were elevated in juvenile Chinook collected throughout sites within Portland Harbor relative to those captured upstream. First-year growth is an established predictor of individual survival and eventual reproductive success in Chinook salmon. Therefore, our results indicate that legacy pollution may be limiting the population abundance of threatened Willamette River Chinook salmon, and future habitat remediation or restoration actions may benefit ongoing species recovery efforts.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Animals , Ecosystem , Rivers , Salmon
SELECTION OF CITATIONS
SEARCH DETAIL
...