Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 16(1): 173-83, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24232857

ABSTRACT

The dynamics of the interfacial reactions of O((3)P) with the hydrocarbon liquids squalane (C30H62, 2,6,10,15,19,23-hexamethyltetracosane) and squalene (C30H50, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene) have been studied experimentally. Laser-induced fluorescence (LIF) was used to detect the nascent gas-phase OH products. The O((3)P) atoms are acutely sensitive to the chemical differences of the squalane and squalene surfaces. The larger exothermicity of abstraction from allylic C-H sites in squalene is reflected in markedly hotter OH rotational and vibrational distributions. There is a more modest increase in translational energy release. A larger fraction of the available energy is deposited in the liquid for squalene than for squalane, consistent with a more extensive geometry change on formation of the allylic radical co-product. Although the dominant reaction mechanism is direct, impulsive scattering, there is some evidence for OH being accommodated at both liquid surfaces, resulting in thermalised translation and rotational distributions. Despite the H-abstraction reaction being strongly favoured energetically for squalene, the yield of OH is substantially lower than for squalane. This is very likely due to competitive addition of O((3)P) to the unsaturated sites in squalene, implying that double bonds are extensively exposed at the liquid surface.

2.
Phys Chem Chem Phys ; 15(31): 12852-63, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23807737

ABSTRACT

Inelastic scattering of OH radicals from liquid surfaces has been investigated experimentally. An initially translationally and rotationally hot distribution of OH was generated by 193 nm photolysis of allyl alcohol. These radicals were scattered from an inert reference liquid, perfluorinated polyether (PFPE), and from the potentially reactive hydrocarbon liquids squalane (C30H62, 2,6,10,15,19,23-hexamethyltetracosane) and squalene (C30H50, trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene). The scattered OH v = 0 products were detected by laser-induced fluorescence. Strong correlations were observed between the translational and rotational energies of the products. The high-N levels are translationally hot, consistent with a predominantly direct, impulsive scattering mechanism. Impulsive scattering also populates the lower-N levels, but a component of translationally relaxed OH, with thermal-desorption characteristics, can also be seen clearly for all three liquids. More of this translationally and rotationally relaxed OH survives from squalane than from squalene. Realistic molecular dynamics simulations confirm that double-bond sites are accessible at the squalene surface. This supports the proposition that relaxed OH may be lost on squalene via an addition mechanism.


Subject(s)
Ethers/chemistry , Fluorocarbons/chemistry , Hydroxyl Radical/chemistry , Squalene/analogs & derivatives , Temperature , Molecular Dynamics Simulation , Squalene/chemistry
3.
J Phys Chem A ; 115(25): 7210-9, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21473641

ABSTRACT

The dynamics of the gas-liquid interfacial reaction of the first electronically excited state of the oxygen atom, O((1)D), with the surface of a liquid hydrocarbon, squalane (C(30)H(62); 2,6,10,15,19,23-hexamethyltetracosane) has been studied experimentally. Translationally hot O((1)D) atoms were generated by 193 nm photolysis of a low pressure (nominally 1 mTorr) of N(2)O a short distance (mean = 6 mm) above a continually refreshed liquid squalane surface. Nascent OH (X(2)Π, v' = 0) reaction products were detected by laser-induced fluorescence (LIF) on the OH A(2)Σ(+)-X(2)Π (1,0) band at the same distance above the surface. The speed distribution of the recoiling OH was characterized by measuring the appearance profiles as a function of photolysis-probe delay for selected rotational levels, N'. The rotational (and, partially, fine-structure) state distributions were also measured by recording LIF excitation spectra at selected photolysis-probe delays. The OH v' = 0 rotational distribution is bimodal and can be empirically decomposed into near thermal (~300 K) and much hotter (~6000 K) Boltzmann-temperature components. There is a strong positive correlation between rotational excitation and translation energy. However, the colder rotational component still represents a significant fraction (~30%) of the fastest products, which have substantially superthermal speeds. We estimate an approximate upper limit of 3% for the quantum yield of OH per O((1)D) atom that collides with the surface. By comparison with established mechanisms for the corresponding reactions in the gas phase, we conclude that the rotationally and translationally hot products are formed via a nonstatistical insertion mechanism. The rotationally cold but translationally hot component is most likely produced by direct abstraction. Secondary collisions at the liquid surface of products of either of the previous two mechanisms are most likely responsible for the rotationally and translationally cold products. We do not think it likely, a priori, that they could be produced in the observed significant yield via a statistical insertion mechanism for a molecule the size of squalane embedded in a surrounding liquid surface.

4.
Phys Chem Chem Phys ; 13(18): 8457-69, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21409254

ABSTRACT

The inelastic scattering of OH radicals from the surfaces of a sequence of potentially reactive organic liquids: squalane (C(30)H(62), 2,6,10,15,19,23-hexamethyltetracosane); squalene (C(30)H(50), trans-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene); and oleic acid (C(18)H(34)O(2), cis-9-octadecanoic acid) was studied experimentally. A liquid long-chain perfluorinated polyether (PFPE, Krytox® 1506) was compared as a chemically inert reference. Gas-phase OH with an average laboratory-frame kinetic energy of 54 kJ mol(-1) was generated by 355-nm photolysis of a low-pressure of HONO a short distance (9 mm) above the liquid surface. Scattered OH was detected at the same distance by laser-induced fluorescence (LIF). Appearance profiles as a function of photolysis-probe delay were recorded for selected OH v' = 0, N' rotational levels. The efficiency of momentum transfer to the surface is least for PFPE and highest for squalane, with squalene and oleic acid intermediate, but in all cases the speed distributions are markedly too hot to be consistent with a thermal accommodation mechanism. The rotational distribution is found to be a function of scattered OH speed. The generally high rotational temperatures implied by the relative fluxes for N' = 1 and 5 were confirmed by LIF excitation spectra at the peak of the profile for each liquid. The trends in translational-to-rotational energy transfer were broadly consistent with the sequence in surface stiffness inferred from the translational inelasticity. The non-statistical distribution of OH fine-structure and Λ-doublet states produced by HONO photolysis appears to be effectively completely scrambled in collisions with the liquid surfaces. With due account taken of the product rotational distributions, and assuming that 100% of the OH scatters from PFPE, the integrated OH survival probabilities were: squalane (0.70 ± 0.08), squalene (0.61 ± 0.07) and oleic acid (0.76 ± 0.10). The 'missing' OH is presumed to have reacted at the liquid surface. Detailed comparison of the appearance profiles suggests that the main difference between squalane and squalene is loss of slower-moving OH, consistent with an additional capture mechanism at the vinyl sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...