Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nat Med ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013430

ABSTRACT

The emergence of highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b viruses and their transmission to dairy cattle and animals, including humans, poses a major global public health threat. Therefore, the development of effective vaccines and therapeutics against H5N1 clade 2.3.4.4b virus is considered a public health priority. In the United States, three H5N1 vaccines derived from earlier strains of HPAI H5N1 (A/Vietnam, clade 1, and A/Indonesia, clade 2.1) virus, with (MF59 or AS03) or without adjuvants, are licensed and stockpiled for pre-pandemic preparedness, but whether they can elicit neutralizing antibodies against circulating H5N1 clade 2.3.4.4b viruses is unknown. In this study, we evaluated the binding, hemagglutination inhibition and neutralizing antibody response generated after vaccination of adults with the three licensed vaccines. Individuals vaccinated with the two adjuvanted licensed H5N1 vaccines generated cross-reactive binding and cross-neutralizing antibodies against the HPAI clade 2.3.4.4b A/Astrakhan/3212/2020 virus. Seroconversion rates of 60-95% against H5 clade 2.3.4.4b were observed after two doses of AS03-adjuvanted-A/Indonesia or three doses of MF59-adjuvanted-A/Vietnam vaccine. These findings suggest that the stockpiled US-licensed adjuvanted H5N1 vaccines generate cross-neutralizing antibodies against circulating HPAI H5N1 clade 2.3.4.4b in humans and may be useful as bridging vaccines until updated H5N1 vaccines become available.

2.
Nature ; 614(7949): 752-761, 2023 02.
Article in English | MEDLINE | ID: mdl-36599369

ABSTRACT

Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.


Subject(s)
COVID-19 , Immunity, Innate , Immunologic Memory , Influenza Vaccines , Sex Characteristics , T-Lymphocytes , Vaccination , Female , Humans , Male , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Interleukin-15/immunology , Toll-Like Receptors/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Monocytes , Immunity, Innate/genetics , Immunity, Innate/immunology , Single-Cell Analysis , Healthy Volunteers
3.
medRxiv ; 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35233581

ABSTRACT

Viral infections can have profound and durable functional impacts on the immune system. There is an urgent need to characterize the long-term immune effects of SARS-CoV-2 infection given the persistence of symptoms in some individuals and the continued threat of novel variants. Here we use systems immunology, including longitudinal multimodal single cell analysis (surface proteins, transcriptome, and V(D)J sequences) from 33 previously healthy individuals after recovery from mild, non-hospitalized COVID-19 and 40 age- and sex-matched healthy controls with no history of COVID-19 to comparatively assess the post-infection immune status (mean: 151 days after diagnosis) and subsequent innate and adaptive responses to seasonal influenza vaccination. Identification of both sex-specific and -independent temporally stable changes, including signatures of T-cell activation and repression of innate defense/immune receptor genes (e.g., Toll-like receptors) in monocytes, suggest that mild COVID-19 can establish new post-recovery immunological set-points. COVID-19-recovered males had higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared to healthy males and COVID-19-recovered females, partly attributable to elevated pre-vaccination frequencies of a GPR56 expressing CD8+ T-cell subset in male recoverees that are "poised" to produce higher levels of IFNγ upon inflammatory stimulation. Intriguingly, by day 1 post-vaccination in COVID-19-recovered subjects, the expression of the repressed genes in monocytes increased and moved towards the pre-vaccination baseline of healthy controls, suggesting that the acute inflammation induced by vaccination could partly reset the immune states established by mild COVID-19. Our study reveals sex-dimorphic immune imprints and in vivo functional impacts of mild COVID-19 in humans, suggesting that prior COVID-19, and possibly respiratory viral infections in general, could change future responses to vaccination and in turn, vaccines could help reset the immune system after COVID-19, both in an antigen-agnostic manner.

4.
Nat Commun ; 10(1): 3338, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350391

ABSTRACT

Several vaccines are approved in the United States for seasonal influenza vaccination every year. Here we compare the impact of repeat influenza vaccination on hemagglutination inhibition (HI) titers, antibody binding and affinity maturation to individual hemagglutinin (HA) domains, HA1 and HA2, across vaccine platforms. Fold change in HI and antibody binding to HA1 trends higher for H1N1pdm09 and H3N2 but not against B strains in groups vaccinated with FluBlok compared with FluCelvax and Fluzone. Antibody-affinity maturation occurs against HA1 domain of H1N1pdm09, H3N2 and B following vaccination with all vaccine platforms, but not against H1N1pdm09-HA2. Importantly, prior year vaccination of subjects receiving repeat vaccinations demonstrated reduced antibody-affinity maturation to HA1 of all three influenza virus strains irrespective of the vaccine platform. This study identifies an important impact of repeat vaccination on antibody-affinity maturation following vaccination, which may contribute to lower vaccine effectiveness of seasonal influenza vaccines in humans.


Subject(s)
Antibody Affinity , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Adolescent , Adult , Antibodies, Viral/immunology , Child , Child, Preschool , Female , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Infant , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza, Human/prevention & control , Influenza, Human/virology , Male , Middle Aged , Vaccination , Young Adult
5.
NPJ Vaccines ; 3: 40, 2018.
Article in English | MEDLINE | ID: mdl-30302282

ABSTRACT

Immune responses to inactivated vaccines against avian influenza are poor due in part to lack of immune memory. Adjuvants significantly increased virus neutralizing titers. We performed comprehensive analyses of polyclonal antibody responses following FDA-approved adjuvanted H5N1-A/Indonesia vaccine, administered in presence or absence of AS03. Using Whole Genome Fragment Phage Display Libraries, we observed that AS03 induced antibody epitope diversity to viral hemagglutinin (HA) and neuraminidase compared with unadjuvanted vaccine. Furthermore, AS03 promoted significant antibody affinity maturation to properly folded H5-HA1 (but not to HA2) domain, which correlated with neutralization titers against both vaccine and heterologous H5N1 strains. However, no increase in heterosubtypic cross-neutralization of Group1-H1N1 seasonal strains was observed. AS03-H5N1 vaccine also induced higher neuraminidase inhibition antibody titers. This study provides insight into the differential impacts of AS03 adjuvant on H5N1 vaccine-induced antibody responses that may help optimize vaccine platforms for future vaccines with improved protection against seasonal and pandemic influenza strains.

6.
Cell Host Microbe ; 22(4): 471-483.e5, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28966056

ABSTRACT

The H7N9 influenza virus causes high-mortality disease in humans but no effective therapeutics are available. Here we report a human monoclonal antibody, m826, that binds to H7 hemagglutinin (HA) and protects against H7N9 infection. m826 binds to H7N9 HA with subnanomolar affinity at acidic pH and 10-fold lower affinity at neutral pH. The high-resolution (1.9 Å) crystal structure of m826 complexed with H7N9 HA indicates that m826 binds an epitope that may be fully exposed upon pH-induced conformational changes in HA. m826 fully protects mice against lethal challenge with H7N9 virus through mechanisms likely involving antibody-dependent cell-mediated cytotoxicity. Interestingly, immunogenetic analysis indicates that m826 is a germline antibody, and m826-like sequences can be identified in H7N9-infected patients, healthy adults, and newborn babies. These m826 properties offer a template for H7N9 vaccine immunogens, a promising candidate therapeutic, and a tool for exploring mechanisms of virus infection inhibition by antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Dogs , Female , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H7N9 Subtype/chemistry , Influenza Vaccines/immunology , Influenza, Human/therapy , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Molecular Conformation , Orthomyxoviridae Infections/therapy , Orthomyxoviridae Infections/virology
7.
Neurol Neuroimmunol Neuroinflamm ; 3(1): e196, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26848487

ABSTRACT

OBJECTIVE: The purpose of this study was to assess the potential immunosuppressive role of daclizumab, a humanized monoclonal antibody against the α chain of the interleukin 2 receptor, in vivo, by comparing immune responses to the 2013 seasonal influenza vaccination between patients with multiple sclerosis (MS) on long-term daclizumab therapy and controls. METHODS: Previously defined subpopulations of adaptive immune cells known to correlate with the immune response to the influenza vaccination were evaluated by 12-color flow cytometry in 23 daclizumab-treated patients with MS and 14 MS or healthy controls before (D0) and 1 day (D1) and 7 days (D7) after administration of the 2013 Afluria vaccine. Neutralizing antibody titers and CD4(+), CD8(+) T cell, B cell, and natural killer cell proliferation to 3 strains of virus contained in the Afluria vaccine were assessed at D0, D7, and 180 days postvaccination. RESULTS: Daclizumab-treated patients and controls demonstrated comparable, statistically significant expansions of previously defined subpopulations of activated CD8(+) T cells and B cells that characterize the development of effective immune responses to the influenza vaccine, while proliferation of T cells to influenza and control antigens was diminished in the daclizumab cohort. All participants fulfilled FDA criteria for seroconversion or seroprotection in antibody assays. CONCLUSION: Despite the mild immunosuppressive effects of daclizumab in vivo demonstrated by an increased incidence of infectious complications in clinical trials, patients with MS under daclizumab therapy mount normal antibody responses to influenza vaccinations.

8.
Vaccine ; 33(32): 3953-62, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26093202

ABSTRACT

In a previously reported phase I clinical trial, subjects vaccinated with two doses of an unadjuvanted H7N9 virus like particle (VLP) vaccine responded poorly (15.6% seroconversion rates with 45µg hemagglutinin (HA) dose). In contrast, 80.6% of subjects receiving H7N9 VLP vaccine (5µg HA) with ISCOMATRIX™ adjuvant developed hemagglutination-inhibition (HI) responses. To better understand the role of adjuvant, complete antibody epitope repertoires of post-vaccination sera were investigated using Whole Genome Fragment Phage Display Library (GFPDL). In addition, antibody affinity maturation following vaccination was measured against HA1 and HA2 antigenic domains using real time Surface Plasmon Resonance (SPR) based kinetic assays. Unadjuvanted H7N9-VLP vaccine generated primarily antibodies targeting the C-terminus of the HA1 domain, predicted to be mostly buried on the native HA spikes, while adjuvanted VLP vaccine generated antibodies against large epitopes in the HA1 spanning the receptor binding domain (RBD). SPR analysis using a functional H7-HA1 domain demonstrated that sera from adjuvanted H7N9-VLP vaccine induced higher total binding antibodies and significantly higher antibody affinity maturation to HA1 compared to sera from unadjuvanted vaccine. Total antibody binding and affinity to the HA1 (but not HA2) domain correlated with HI and neutralization titers. This study demonstrates that ISCOMATRIX™ adjuvanted vaccine promotes higher quality antibody immune response against avian influenza in naïve humans.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/blood , Antibody Affinity , Cholesterol/administration & dosage , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Phospholipids/administration & dosage , Saponins/administration & dosage , Vaccines, Virus-Like Particle/immunology , Antibodies, Neutralizing/blood , Drug Combinations , Epitopes/immunology , Hemagglutination Inhibition Tests , Humans , Influenza Vaccines/administration & dosage , Peptide Library , Surface Plasmon Resonance , Vaccines, Virus-Like Particle/administration & dosage
9.
PLoS One ; 10(1): e0115476, 2015.
Article in English | MEDLINE | ID: mdl-25629161

ABSTRACT

A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions.


Subject(s)
Adenoviruses, Human , Genetic Vectors , Immunization, Secondary , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/immunology , Vaccines, Subunit/immunology , Adenoviruses, Human/genetics , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Affinity/immunology , Clinical Trials, Phase I as Topic , Cross Reactions/immunology , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics
10.
Vaccine ; 32(48): 6421-32, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25284811

ABSTRACT

Initiation of mass vaccination is critical in response to influenza pandemic. There is an urgent need of a simple, rapid method for production of influenza vaccine that is more effective than current traditional influenza vaccines. Recent H7N9 transmissions to humans in China with high morbidity/mortality initiated extensive vaccine evaluation. We produced the HA1 domains (amino acids 1-320) from H7N9 and H7N7 strains in E. coli. Both were found to contain primarily monomers/trimers with low oligomeric content. However, when residues from the N-terminal ß sheet (first 8 amino acid) of H7 HA1 domains were swapped with the corresponding amino acids from H5N1, functional oligomeric H7 HA1 were produced (HA1-DS), demonstrating strong receptor binding and hemagglutination. In rabbits, the HA1-DS from either H7N9 or H7N7 generated high neutralization titers against both homologous and heterologous H7 strains, superior to the unmodified H7 HA1 proteins. In ferrets, HA1-DS from H7N7 elicited higher (and faster) HI titers, better protected ferrets from lethality, weight loss, and reduced viral loads following challenge with wild-type highly pathogenic H7N7 virus compared with inactivated H7N7 subunit vaccine. HA1-DS vaccinated ferrets were also better protected from weight loss after challenge with the heterologous H7N9 virus compared with inactivated H7N7 subunit vaccine. Importantly, the H7N7 HA1-DS vaccine induced antibody affinity maturation far superior to the inactivated H7N7 subunit vaccine, which strongly correlated with control of viral loads in the nasal washes after challenge with either H7N7 or H7N9 strains. We conclude that N-terminus ß sheet domain-swap can be used to produce stable functional oligomeric forms of better recombinant HA1 vaccines in simple, inexpensive bacterial system for rapid response to emerging pandemic threat for the global population.


Subject(s)
Antibody Affinity/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H7N7 Subtype , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Ferrets , Hemagglutination Tests , Humans , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Protein Multimerization , Protein Structure, Tertiary , Rabbits , Vaccines, Inactivated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL