Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Hosp Infect ; 148: 1-10, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447806

ABSTRACT

BACKGROUND: Many UK hospitals rely heavily on natural ventilation as their main source of airflow in patient wards. This method of ventilation can have cost and energy benefits, but it may lead to unpredictable flow patterns between indoor spaces, potentially leading to the unexpected transport of infectious material to other connecting zones. However, the effects of weather conditions on airborne transmission are often overlooked. METHODS: A multi-zone CONTAM model of a naturally ventilated hospital respiratory ward, incorporating time-varying weather, was proposed. Coupling this with an airborne infection model, this study assessed the variable risk in interconnected spaces, focusing particularly on occupancy, disease and ventilation scenarios based on a UK respiratory ward. RESULTS: The results suggest that natural ventilation with varying weather conditions can cause irregularities in the ventilation rates and interzonal flow rates of connected zones, leading to infrequent but high peaks in the concentration of airborne pathogens in particular rooms. This transient behaviour increases the risk of airborne infection, particularly through movement of pathogens between rooms, and highlights that large outbreaks may be more likely under certain conditions. This study demonstrated how ventilation rates achieved by natural ventilation are likely to fall below the recommended guidance, and that the implementation of supplemental mechanical ventilation can increase ventilation rates and reduce the variability in infection risks. CONCLUSION: This model emphasises the need for consideration of transient external conditions when assessing the risk of transmission of airborne infection in indoor environments.


Subject(s)
Air Microbiology , Cross Infection , Hospitals , Ventilation , Weather , Humans , Cross Infection/transmission , United Kingdom/epidemiology , Air Pollution, Indoor , Risk Assessment
2.
J Hosp Infect ; 120: 23-30, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34863874

ABSTRACT

BACKGROUND: Healthcare-acquired COVID-19 has been an additional burden on hospitals managing increasing numbers of patients with SARS-CoV-2. One acute hospital (W) among three in a Scottish healthboard experienced an unexpected surge of COVID-19 clusters. AIM: To investigate possible causes of COVID-19 clusters at Hospital W. METHODS: Daily surveillance provided total numbers of patients and staff involved in clusters in three acute hospitals (H, M and W) and care homes across the healthboard. All clusters were investigated and documented, along with patient boarding, community infection rates and outdoor temperatures from October 2020 to March 2021. Selected SARS-CoV-2 strains were genotyped. FINDINGS: There were 19 COVID-19 clusters on 14 wards at Hospital W during the six-month study period, lasting from two to 42 days (average, five days; median, 14 days) and involving an average of nine patients (range 1-24) and seven staff (range 0-17). COVID-19 clusters in Hospitals H and M reflected community infection rates. An outbreak management team implemented a control package including daily surveillance; ward closures; universal masking; screening; restricting staff and patient movement; enhanced cleaning; and improved ventilation. Forty clusters occurred across all three hospitals before a January window-opening policy, after which there were three during the remainder of the study. CONCLUSION: The winter surge of COVID-19 clusters was multi-factorial, but clearly exacerbated by moving trauma patients around the hospital. An extended infection prevention and control package including enhanced natural ventilation helped reduce COVID-19 clusters in acute hospitals.


Subject(s)
COVID-19 , Delivery of Health Care , Hospitals , Humans , SARS-CoV-2 , Scotland/epidemiology
3.
J Hosp Infect ; 109: 44-51, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33271214

ABSTRACT

BACKGROUND: Healthcare worker (HCW) behaviours, such as the sequence of their contacts with surfaces and hand hygiene moments, are important for understanding disease transmission. AIM: To propose a method for recording sequences of HCW behaviours during mock vs actual procedures, and to evaluate differences for use in infection risk modelling and staff training. METHODS: Procedures for three types of care were observed under mock and actual settings: intravenous (IV) drip care, observational care and doctors' rounds on a respiratory ward in a university teaching hospital. Contacts and hand hygiene behaviours were recorded in real-time using either a handheld tablet or video cameras. FINDINGS: Actual patient care demonstrated 70% more surface contacts than mock care. It was also 2.4 min longer than mock care, but equal in terms of patient contacts. On average, doctors' rounds took 7.5 min (2.5 min for mock care), whilst auxiliary nurses took 4.9 min for observational care (2.4 min for mock care). Registered nurses took 3.2 min for mock IV care and 3.8 min for actual IV care; this translated into a 44% increase in contacts. In 51% of actual care episodes and 37% of mock care episodes, hand hygiene was performed before patient contact; in comparison, 15% of staff delivering actual care performed hand hygiene after patient contact on leaving the room vs 22% for mock care. The number of overall touches in the patient room was a modest predictor of hand hygiene. Using a model to predict hand contamination from surface contacts for Staphylococcus aureus, Escherichia coli and norovirus, mock care underestimated micro-organisms on hands by approximately 30%.


Subject(s)
Cross Infection , Hand Hygiene , Infection Control , Guideline Adherence , Hand , Hand Disinfection , Health Personnel , Humans , Patient Care , Patient Simulation , Patients' Rooms
4.
Sci Rep ; 10(1): 11841, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678236

ABSTRACT

In the context of increasingly airtight homes, there is currently little known about the type and diversity of microorganisms in the home, or factors that could affect their abundance, diversity and nature. In this study, we examined the type and prevalence of cultivable microorganisms at eight different sites in 100 homes of older adults located in Glasgow, Scotland. The microbiological sampling was undertaken alongside a household survey that collated information on household demographics, occupant behaviour, building characteristics, antibiotic use and general health information. Each of the sampled sites revealed its own distinct microbiological character, in both species and number of cultivable microbes. While some potential human pathogens were identified, none were found to be multidrug resistant. We examined whether the variability in bacterial communities could be attributed to differences in building characteristics, occupant behaviour or household factors. Sampled sites furnished specific microbiological characteristics which reflected room function and touch frequency. We found that homes that reported opening windows more often were strongly associated with lower numbers of Gram-negative organisms at indoor sites (p < 0.0001). This work offers one of the first detailed analysis of cultivable microbes in homes of older adults and their relationship with building and occupancy related factors, in a UK context.


Subject(s)
Air Pollution, Indoor/analysis , Bacillaceae/isolation & purification , Bacteria/growth & development , Housing , Micrococcaceae/isolation & purification , Staphylococcaceae/isolation & purification , Activities of Daily Living , Aged , Bacillaceae/classification , Family Characteristics , Fomites/microbiology , Humans , Micrococcaceae/classification , Scotland , Staphylococcaceae/classification , Touch/physiology , Ventilation
6.
Waste Manag ; 80: 154-167, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30454995

ABSTRACT

This study investigated the performance of four pilot-scale biofilters for the removal of bioaerosols from waste airstreams in a materials recovery facility (MRF) based in Leeds, UK. A six-stage Andersen sampler was used to measure the concentrations of four groups of bioaerosols (Aspergillus fumigatus, total fungi, total mesophilic bacteria and Gram negative bacteria) in the airstream before and after passing through the biofilters over a period of 11 months. The biofilters achieved average removal efficiency (RE) of 70% (35 to 97%) for A. fumigatus, 71% (35 to 94%) for total fungi, 68% (47 to 86%) for total mesophilic bacteria and 50% (-4 to 85%) for Gram negative bacteria, provided that the inlet concentration was high (103-105 cfu m-3), which is the case for most waste treatment facilities. The performance was highly variable at low inlet concentration with some cases showing an increase in outlet concentrations, suggesting that biofilters had the potential to be net emitters of bioaerosols. The gas phase residence time did not appear to have any statistically significant impact on bioaerosol removal efficiency. Particle size distribution varied between the inlet and outlet air, with the outlet having a greater proportion of smaller sized particles that represent a greater human health risk as they can penetrate deep into the respiratory system where gaseous exchange occurs. However, the outlet concentrations were low and would further be diluted by wind in full scale applications. In conclusion, this study shows that biofilters designed and operated for odour degradation can also achieve significant bioaerosol control in waste gas.


Subject(s)
Odorants , Wind , Filtration , Fungi , Humans
7.
J Hosp Infect ; 100(3): e123-e129, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29649556

ABSTRACT

BACKGROUND: There are few data and no accepted standards for air quality in the intensive care unit (ICU). Any relationship between airborne pathogens and hospital-acquired infection (HAI) risk in the ICU remains unknown. AIM: First, to correlate environmental contamination of air and surfaces in the ICU; second, to examine any association between environmental contamination and ICU-acquired staphylococcal infection. METHODS: Patients, air, and surfaces were screened on 10 sampling days in a mechanically ventilated 10-bed ICU for a 10-month period. Near-patient hand-touch sites (N = 500) and air (N = 80) were screened for total colony count and Staphylococcus aureus. Air counts were compared with surface counts according to proposed standards for air and surface bioburden. Patients were monitored for ICU-acquired staphylococcal infection throughout. FINDINGS: Overall, 235 of 500 (47%) surfaces failed the standard for aerobic counts (≤2.5 cfu/cm2). Half of passive air samples (20/40: 50%) failed the 'index of microbial air' contamination (2 cfu/9 cm plate/h), and 15/40 (37.5%) active air samples failed the clean air standard (<10 cfu/m3). Settle plate data were closer to the pass/fail proportion from surfaces and provided the best agreement between air parameters and surfaces when evaluating surface benchmark values of 0-20 cfu/cm2. The surface standard most likely to reflect hygiene pass/fail results compared with air was 5 cfu/cm2. Rates of ICU-acquired staphylococcal infection were associated with surface counts per bed during 72h encompassing sampling days (P = 0.012). CONCLUSION: Passive air sampling provides quantitative data analogous to that obtained from surfaces. Settle plates could serve as a proxy for routine environmental screening to determine the infection risk in ICU.


Subject(s)
Cross Infection/epidemiology , Cross Infection/microbiology , Environmental Microbiology , Intensive Care Units , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/isolation & purification , Colony Count, Microbial , Humans
8.
J Hosp Infect ; 97(4): 433-434, 2017 12.
Article in English | MEDLINE | ID: mdl-28935524
9.
J Hosp Infect ; 94(1): 48-51, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27392977

ABSTRACT

This study quantifies the relationship between hand hygiene and the frequency with which healthcare workers (HCWs) touch surfaces in patient rooms. Surface contacts and hand hygiene were recorded in a single-bed UK hospital ward for six care types. Surface contacts often formed non-random patterns, but hygiene before or after patient contact depends significantly on care type (P=0.001). The likelihood of hygiene correlated with the number of surface contacts (95% confidence interval 1.1-5.8, P=0.002), but not with time spent in the room. This highlights that a potential subconscious need for hand hygiene may have developed in HCWs, which may support and help focus future hygiene education programmes.


Subject(s)
Attitude of Health Personnel , Cross Infection/prevention & control , Disease Transmission, Infectious/prevention & control , Hand Hygiene/methods , Infection Control/methods , Touch , Humans , Patients' Rooms , United Kingdom
10.
Indoor Air ; 25(6): 694-707, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25614923

ABSTRACT

UNLABELLED: Aerial dispersion of pathogens is recognized as a potential transmission route for hospital acquired infections; however, little is known about the link between healthcare worker (HCW) contacts' with contaminated surfaces, the transmission of infections and hospital room design. We combine computational fluid dynamics (CFD) simulations of bioaerosol deposition with a validated probabilistic HCW-surface contact model to estimate the relative quantity of pathogens accrued on hands during six types of care procedures in two room types. Results demonstrate that care type is most influential (P < 0.001), followed by the number of surface contacts (P < 0.001) and the distribution of surface pathogens (P = 0.05). Highest hand contamination was predicted during Personal care despite the highest levels of hand hygiene. Ventilation rates of 6 ac/h vs. 4 ac/h showed only minor reductions in predicted hand colonization. Pathogens accrued on hands decreased monotonically after patient care in single rooms due to the physical barrier of bioaerosol transmission between rooms and subsequent hand sanitation. Conversely, contamination was predicted to increase during contact with patients in four-bed rooms due to spatial spread of pathogens. Location of the infectious patient with respect to ventilation played a key role in determining pathogen loadings (P = 0.05). PRACTICAL IMPLICATIONS: We present the first quantitative model predicting the surface contacts by HCW and the subsequent accretion of pathogenic material as they perform standard patient care. This model indicates that single rooms may significantly reduce the risk of cross-contamination due to indirect infection transmission. Not all care types pose the same risks to patients, and housekeeping performed by HCWs may be an important contribution in the transmission of pathogens between patients. Ventilation rates and positioning of infectious patients within four-bed rooms can mitigate the accretion of pathogens, whereby reducing the risk of missed hand hygiene opportunities. The model provides a tool to quantitatively evaluate the influence of hospital room design on infection risk.


Subject(s)
Cross Infection/transmission , Models, Biological , Cross Infection/prevention & control , Hand Disinfection , Humans , Hydrodynamics , Infectious Disease Transmission, Professional-to-Patient , Patient Care , Patients' Rooms , Ventilation
11.
Vet Rec ; 157(20): 636, 2005 Nov 12.
Article in English | MEDLINE | ID: mdl-16284336
SELECTION OF CITATIONS
SEARCH DETAIL
...