Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Primatol ; : e23634, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715226

ABSTRACT

Systems of the body develop in a modular manner. For example, neural development in primates is generally rapid, whereas dental development varies much more. In the present study, we examined development of the skull, teeth, and postcrania in a highly specialized leaping primate, Galago moholi. Eighteen specimens ranging from birth to adult were studied. Bones, teeth, and the cranial cavity (i.e., endocast) were reconstructed with Amira software based on microCT cross-referenced to histology. Amira was also used to compute endocast volume (as a proxy for brain size). Reconstructions of the wrist and ankle show that ossification is complete at 1 month postnatally, consistent with the onset of leaping locomotion in this species. Endocranial volume is less than 50% of adult volume at birth, ~80% by 1 month, and has reached adult volume by 2 months postnatal age. Full deciduous dentition eruption occurs by 2 weeks, and the young are known to begin capturing and consuming arthropods on their own by 4 weeks, contemporaneous with the timing of bone and ankle ossification that accompanies successful hunting. The modular pattern of development of body systems in Galago moholi provides an interesting view of a "race" to adult morphology for some joints that are critical for specialized leaping and clinging, rapid crown mineralization to begin a transitional diet, but perhaps more prolonged reliance on nursing to support brain growth.

2.
Anat Rec (Hoboken) ; 307(1): 49-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37060246

ABSTRACT

Paranasal sinuses of living apes and humans grow with positive allometry, suggesting a novel mechanism for bone enlargement. Here, we examine the paranasal sinuses of the owl monkey (Aotus spp.) and a tamarin (Saguinus midas) across postnatal development. The prediction that paranasal sinuses grow disproportionately faster than the main nasal chamber is tested. We used diffusible iodine-based contrast-enhanced computed tomography and histology to study sinuses in eight Aotus and three tamarins ranging from newborn to adult ages. Sinuses were segmented at the mucosa-air cavity interface and measured in volume. All sinuses were lined by a ciliated respiratory epithelium, except for the ethmoid air cells in Aotus, which are lined in part by olfactory epithelium. An age comparison indicates that only the maxillary sinus and ethmoid air cells are present in newborns, and two additional sinuses (invading the orbitosphenoid and the frontal bone), do not appear until late infancy or later. Comparing newborns and adults, the main nasal airway is 10 times larger in the adult Aotus and ~ 6.5 times larger in adult Saguinus. In contrast, the maxillary sinus far exceeds this magnitude of difference: 24 times larger in the adult Aotus and 46 times larger in adult Saguinus. The frontal sinuses add significantly to total paranasal space volume in both species, but this growth is likely delayed until juvenile age. Results suggest ethmoid air cells expand the least. These results support our prediction that most paranasal sinuses have a distinctly higher growth rate compared to the main nasal chamber.


Subject(s)
Frontal Sinus , Hominidae , Paranasal Sinuses , Infant, Newborn , Humans , Animals , Adult , Saguinus , Platyrrhini , Paranasal Sinuses/diagnostic imaging , Paranasal Sinuses/anatomy & histology , Maxillary Sinus/anatomy & histology , Frontal Sinus/anatomy & histology , Aotidae
3.
PeerJ ; 9: e12261, 2021.
Article in English | MEDLINE | ID: mdl-34760352

ABSTRACT

Diffusible iodine-based contrast-enhanced computed tomography (diceCT) has emerged as a viable tool for discriminating soft tissues in serial CT slices, which can then be used for three-dimensional analysis. This technique has some potential to supplant histology as a tool for identification of body tissues. Here, we studied the head of an adult fruit bat (Cynopterus sphinx) and a late fetal vampire bat (Desmodus rotundus) using diceCT and µCT. Subsequently, we decalcified, serially sectioned and stained the same heads. The two CT volumes were rotated so that the sectional plane of the slice series closely matched that of histological sections, yielding the ideal opportunity to relate CT observations to corresponding histology. Olfactory epithelium is typically thicker, on average, than respiratory epithelium in both bats. Thus, one investigator (SK), blind to the histological sections, examined the diceCT slice series for both bats and annotated changes in thickness of epithelium on the first ethmoturbinal (ET I), the roof of the nasal fossa, and the nasal septum. A second trial was conducted with an added criterion: radioopacity of the lamina propria as an indicator of Bowman's glands. Then, a second investigator (TS) annotated images of matching histological sections based on microscopic observation of epithelial type, and transferred these annotations to matching CT slices. Measurements of slices annotated according to changes in epithelial thickness alone closely track measurements of slices based on histologically-informed annotations; matching histological sections confirm blind annotations were effective based on epithelial thickness alone, except for a patch of unusually thick non-OE, mistaken for OE in one of the specimens. When characteristics of the lamina propria were added in the second trial, the blind annotations excluded the thick non-OE. Moreover, in the fetal bat the use of evidence for Bowman's glands improved detection of olfactory mucosa, perhaps because the epithelium itself was thin enough at its margins to escape detection. We conclude that diceCT can by itself be highly effective in identifying distribution of OE, especially where observations are confirmed by histology from at least one specimen of the species. Our findings also establish that iodine staining, followed by stain removal, does not interfere with subsequent histological staining of the same specimen.

SELECTION OF CITATIONS
SEARCH DETAIL
...