Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 529(7584): 54-8, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26738590

ABSTRACT

How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.

2.
Nature ; 442(7103): 660-3, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16900194

ABSTRACT

Since the discovery of the trans-neptunian objects (TNOs) in 1992, nearly one thousand new members have been added to our Solar System, several of which are as big as--or even larger than--Pluto. The properties of the population of TNOs, such as the size distribution and the total number, are valuable information for understanding the formation of the Solar System, but direct observation is only possible for larger objects with diameters above several tens of kilometres. Smaller objects, which are expected to be more abundant, might be found when they occult background stars, but hitherto there have been no definite detections. Here we report the discovery of such occultation events at millisecond timescales in the X-ray light curve of Scorpius X-1. The estimated sizes of these occulting TNOs are < or =100 m. Their abundance is in line with an extrapolation of the distribution of sizes of larger TNOs.

SELECTION OF CITATIONS
SEARCH DETAIL
...