Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
JCI Insight ; 9(8)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470489

ABSTRACT

Allergic airway disease (AAD) is an example of type 2 inflammation that leads to chronic airway eosinophilia controlled by CD4 Th2 cells. Inflammation is reinforced by mast cells and basophils armed with allergen-specific IgE made by allergen-specific B2 B cells of the adaptive immune system. Little is known about how AAD is affected by innate B1 cells, which produce natural antibodies (NAbs) that facilitate apoptotic cell clearance and detect damage- and pathogen-associated molecular patterns (DAMPS and PAMPS). We used transgenic mice lacking either B cells or NAbs in distinct mouse models of AAD that require either DAMPS or PAMPS as the initial trigger for type 2 immunity. In a DAMP-induced allergic model, driven by alum and uric acid, mouse strains lacking B cells (CD19DTA), NAbs (IgHEL MD4), or all secreted antibodies (sIgm-/-Aid-/-) displayed a significant reduction in both eosinophilia and Th2 priming compared with WT or Aid-/- mice lacking only germinal center-dependent high-affinity class-switched antibodies. Replenishing B cell-deficient mice with either unimmunized B1 B cells or NAbs during sensitization restored eosinophilia, suggesting that NAbs are required for licensing antigen-presenting cells to prime type 2 immunity. Conversely, PAMP-dependent type 2 priming to house dust mite or Aspergillus was not dependent on NAbs. This study reveals an underappreciated role of B1 B cell-generated NAbs in selectively driving DAMP-induced type 2 immunity.


Subject(s)
B-Lymphocytes , Animals , Mice , B-Lymphocytes/immunology , Th2 Cells/immunology , Disease Models, Animal , Mice, Transgenic , Mice, Knockout , Immunity, Innate/immunology , Mice, Inbred C57BL , Immunoglobulin E/immunology , Alarmins/immunology , Antibodies/immunology , Hypersensitivity/immunology , Eosinophilia/immunology
2.
J Immunol ; 211(11): 1623-1629, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37850969

ABSTRACT

Transplantation and cancer expose the immune system to neoantigens, including immunogenic (dominant and subdominant) and nonimmunogenic Ags with varying quantities and affinities of immunodominant peptides. Conceptually, immunity is believed to mainly target dominant Ags when subdominant or nondominant Ags are linked within the same cell due to T cell interference. This phenomenon is called immunodominance. However, our previous study in mice showed that linked nonimmunogenic Ags (OVA and GFP) containing immunodominant peptides mount immunity irrespective of the MHC-matched allogeneic cell's immunogenicity. Consequently, we further explored 1) under what circumstances does the congenic marker CD45.1 provoke immunity in CD45.2 mice, and 2) whether linking two dominant or subdominant Ags can instigate an immune response. Our observations showed that CD45.1 (or CD45.2), when connected to low-immunogenic cell types is presented as an immunogen, which contrasts with its outcome when linked to high-immunogenic cell types. Moreover, we found that both dominant and subdominant Ags are presented as immunogens when linked in environments with lower immunogenic thresholds. These findings challenge the existing perception that immunity is predominantly elicited against dominant Ags when linked to subdominant or nondominant Ags. This study takes a fundamental step toward understanding the nuanced relationship between immunogenic and nonimmunogenic Ags, potentially opening new avenues for comprehending cancer immunoediting and enhancing the conversion of cold tumors with low immunogenicity into responsive hot tumors.


Subject(s)
Neoplasms , T-Lymphocytes, Cytotoxic , Mice , Animals , Allogeneic Cells , Peptides , Immunodominant Epitopes , Mice, Inbred C57BL
3.
J Exp Med ; 220(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-36946983

ABSTRACT

Dendritic cells (DCs) and monocytes capture, transport, and present antigen to cognate T cells in the draining lymph nodes (LNs) in a CCR7-dependent manner. Since only migratory DCs express this chemokine receptor, it is unclear how monocytes reach the LN. In steady-state and following inhalation of several PAMPs, scRNA-seq identified LN mononuclear phagocytes as monocytes, resident, or migratory type 1 and type 2 conventional (c)DCs, despite the downregulation of Xcr1, Clec9a, H2-Ab1, Sirpa, and Clec10a transcripts on migratory cDCs. Migratory cDCs, however, upregulated Ccr7, Ccl17, Ccl22, and Ccl5. Migratory monocytes expressed Ccr5, a high-affinity receptor for Ccl5. Using two tracking methods, we observed that both CD88hiCD26lomonocytes and CD88-CD26hi cDCs captured inhaled antigens in the lung and migrated to LNs. Antigen exposure in mixed-chimeric Ccl5-, Ccr2-, Ccr5-, Ccr7-, and Batf3-deficient mice demonstrated that while antigen-bearing DCs use CCR7 to reach the LN, monocytes use CCR5 to follow CCL5-secreting migratory cDCs into the LN, where they regulate DC-mediated immunity.


Subject(s)
Dendritic Cells , Monocytes , Mice , Animals , Receptors, CCR7 , Lung , Antigens , Lymph Nodes , Cell Movement , Mice, Inbred C57BL
4.
J Immunol ; 209(7): 1252-1259, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36028292

ABSTRACT

Recent studies have revealed a critical role for natural Abs (NAbs) in antitumor immune responses. However, the role of NAbs in cancer immunosurveillance remains unexplored, mainly because of the lack of in vivo models that mimic the early recognition and elimination of transforming cells. In this article, we propose a role for NAbs in alerting the immune system against precancerous neoantigen-expressing cells immediately after they escape intrinsic tumor suppression mechanisms. We identify four distinct reproducible, trackable, MHC-matched neoantigen-expressing cell models that do not form tumors as the end point. This amplified readout in the critical window prior to tumor formation allows investigation of new mediators of cancer immunosurveillance. We found that neoantigen-expressing cells adoptively transferred in NAb-deficient mice persisted, whereas they were eliminated in wild-type mice, indicating that the circulating NAb repertoire alerts the immune system to the presence of transformed cells. Moreover, immunity is mounted against immunogenic and nonimmunogenic neoantigens contained in the NAb-tagged cells, regardless of whether the NAb directly recognizes the neoantigens. Beyond these neoantigen-expressing model systems, we observed a significantly greater tumor burden in chemically and virally induced tumor models in NAb-deficient mice compared with wild-type mice. Restoration of the NAb repertoire in NAb-deficient mice elicited the recognition and elimination of neoantigen-expressing cells and cancer. These data show that NAbs are required and sufficient for elimination of transformed cells early in tumorigenesis. These models can now be used to investigate how NAbs stimulate immunity via recognition receptors to eliminate precancerous cells.


Subject(s)
Antibodies , Precancerous Conditions , Animals , Carcinogenesis , Immune System , Mice
5.
Cancer Metab ; 9(1): 36, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627389

ABSTRACT

BACKGROUND: Enhanced metabolic plasticity and diversification of energy production is a hallmark of highly proliferative breast cancers. This contributes to poor pharmacotherapy efficacy, recurrence, and metastases. We have previously identified a mitochondrial-targeted furazano[3,4-b]pyrazine named BAM15 that selectively reduces bioenergetic coupling efficiency and is orally available. Here, we evaluated the antineoplastic properties of uncoupling oxidative phosphorylation from ATP production in breast cancer using BAM15. METHODS: The anticancer effects of BAM15 were evaluated in human triple-negative MDA-MB-231 and murine luminal B, ERα-negative EO771 cells as well as in an orthotopic allograft model of highly proliferative mammary cancer in mice fed a standard or high fat diet (HFD). Untargeted transcriptomic profiling of MDA-MB-231 cells was conducted after 16-h exposure to BAM15. Additionally, oxidative phosphorylation and electron transfer capacity was determined in permeabilized cells and excised tumor homogenates after treatment with BAM15. RESULTS: BAM15 increased proton leak and over time, diminished cell proliferation, migration, and ATP production in both MDA-MB-231 and EO771 cells. Additionally, BAM15 decreased mitochondrial membrane potential, while inducing apoptosis and reactive oxygen species accumulation in MDA-MB-231 and EO771 cells. Untargeted transcriptomic profiling of MDA-MB-231 cells further revealed inhibition of signatures associated with cell survival and energy production by BAM15. In lean mice, BAM15 lowered body weight independent of food intake and slowed tumor progression compared to vehicle-treated controls. In HFD mice, BAM15 reduced tumor growth relative to vehicle and calorie-restricted weight-matched controls mediated in part by impaired cell proliferation, mitochondrial respiratory function, and ATP production. LC-MS/MS profiling of plasma and tissues from BAM15-treated animals revealed distribution of BAM15 in adipose, liver, and tumor tissue with low abundance in skeletal muscle. CONCLUSIONS: Collectively, these data indicate that mitochondrial uncoupling may be an effective strategy to limit proliferation of aggressive forms of breast cancer. More broadly, these findings highlight the metabolic vulnerabilities of highly proliferative breast cancers which may be leveraged in overcoming poor responsiveness to existing therapies.

6.
J Biol Chem ; 297(4): 101196, 2021 10.
Article in English | MEDLINE | ID: mdl-34529976

ABSTRACT

Mitochondria undergo continuous cycles of fission and fusion to promote inheritance, regulate quality control, and mitigate organelle stress. More recently, this process of mitochondrial dynamics has been demonstrated to be highly sensitive to nutrient supply, ultimately conferring bioenergetic plasticity to the organelle. However, whether regulators of mitochondrial dynamics play a causative role in nutrient regulation remains unclear. In this study, we generated a cellular loss-of-function model for dynamin-related protein 1 (DRP1), the primary regulator of outer membrane mitochondrial fission. Loss of DRP1 (shDRP1) resulted in extensive ultrastructural and functional remodeling of mitochondria, characterized by pleomorphic enlargement, increased electron density of the matrix, and defective NADH and succinate oxidation. Despite increased mitochondrial size and volume, shDRP1 cells exhibited reduced cellular glucose uptake and mitochondrial fatty acid oxidation. Untargeted transcriptomic profiling revealed severe downregulation of genes required for cellular and mitochondrial calcium homeostasis, which was coupled to loss of ATP-stimulated calcium flux and impaired substrate oxidation stimulated by exogenous calcium. The insights obtained herein suggest that DRP1 regulates substrate oxidation by altering whole-cell and mitochondrial calcium dynamics. These findings are relevant to the targetability of mitochondrial fission and have clinical relevance in the identification of treatments for fission-related pathologies such as hereditary neuropathies, inborn errors in metabolism, cancer, and chronic diseases.


Subject(s)
Calcium Signaling , Dynamins/metabolism , Mitochondria, Muscle/metabolism , Mitochondrial Dynamics , Cell Line , Dynamins/genetics , Fatty Acids/genetics , Fatty Acids/metabolism , Humans , Mitochondria, Muscle/genetics , Oxidation-Reduction
7.
Metabolism ; 121: 154803, 2021 08.
Article in English | MEDLINE | ID: mdl-34090870

ABSTRACT

BACKGROUND AND AIMS: A diminution in skeletal muscle mitochondrial function due to ectopic lipid accumulation and excess nutrient intake is thought to contribute to insulin resistance and the development of type 2 diabetes. However, the functional integrity of mitochondria in insulin-resistant skeletal muscle remains highly controversial. METHODS: 19 healthy adults (age:28.4 ±â€¯1.7 years; BMI:22.7 ±â€¯0.3 kg/m2) received an overnight intravenous infusion of lipid (20% Intralipid) or saline followed by a hyperinsulinemic-euglycemic clamp to assess insulin sensitivity using a randomized crossover design. Skeletal muscle biopsies were obtained after the overnight lipid infusion to evaluate activation of mitochondrial dynamics proteins, ex-vivo mitochondrial membrane potential, ex-vivo oxidative phosphorylation and electron transfer capacity, and mitochondrial ultrastructure. RESULTS: Overnight lipid infusion increased dynamin related protein 1 (DRP1) phosphorylation at serine 616 and PTEN-induced kinase 1 (PINK1) expression (P = 0.003 and P = 0.008, respectively) in skeletal muscle while reducing mitochondrial membrane potential (P = 0.042). The lipid infusion also increased mitochondrial-associated lipid droplet formation (P = 0.011), the number of dilated cristae, and the presence of autophagic vesicles without altering mitochondrial number or respiratory capacity. Additionally, lipid infusion suppressed peripheral glucose disposal (P = 0.004) and hepatic insulin sensitivity (P = 0.014). CONCLUSIONS: These findings indicate that activation of mitochondrial fission and quality control occur early in the onset of insulin resistance in human skeletal muscle. Targeting mitochondrial dynamics and quality control represents a promising new pharmacological approach for treating insulin resistance and type 2 diabetes. CLINICAL TRIAL REGISTRATION: NCT02697201, ClinicalTrials.gov.


Subject(s)
Insulin/metabolism , Lipids/pharmacology , Mitochondria, Muscle/drug effects , Mitochondrial Dynamics/drug effects , Adult , Biopsy , Cell Respiration/drug effects , Emulsions/administration & dosage , Emulsions/pharmacology , Fatty Acids/administration & dosage , Fatty Acids/pharmacology , Female , Glucose Clamp Technique , Healthy Volunteers , Humans , Infusions, Intravenous , Insulin Resistance/physiology , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Lipids/administration & dosage , Male , Metabolic Networks and Pathways/drug effects , Mitochondria, Muscle/pathology , Mitochondria, Muscle/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Phospholipids/administration & dosage , Phospholipids/pharmacology , Soybean Oil/administration & dosage , Soybean Oil/pharmacology
8.
EMBO Mol Med ; 12(7): e12088, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32519812

ABSTRACT

Obesity is a leading cause of preventable death worldwide. Despite this, current strategies for the treatment of obesity remain ineffective at achieving long-term weight control. This is due, in part, to difficulties in identifying tolerable and efficacious small molecules or biologics capable of regulating systemic nutrient homeostasis. Here, we demonstrate that BAM15, a mitochondrially targeted small molecule protonophore, stimulates energy expenditure and glucose and lipid metabolism to protect against diet-induced obesity. Exposure to BAM15 in vitro enhanced mitochondrial respiratory kinetics, improved insulin action, and stimulated nutrient uptake by sustained activation of AMPK. C57BL/6J mice treated with BAM15 were resistant to weight gain. Furthermore, BAM15-treated mice exhibited improved body composition and glycemic control independent of weight loss, effects attributable to drug targeting of lipid-rich tissues. We provide the first phenotypic characterization and demonstration of pre-clinical efficacy for BAM15 as a pharmacological approach for the treatment of obesity and related diseases.


Subject(s)
Glucose/metabolism , Glycemic Control , Mitochondria/drug effects , Mitochondria/metabolism , Obesity/metabolism , Obesity/prevention & control , Uncoupling Agents/pharmacology , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/drug effects , Glycemic Control/methods , Insulin Resistance , Male , Mice , Mice, Inbred C57BL
9.
Am J Physiol Endocrinol Metab ; 319(1): E187-E195, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32396388

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and impaired insulin sensitivity. Reduced hepatic ketogenesis may promote these pathologies, but data are inconclusive in humans and the link between NAFLD and reduced insulin sensitivity remains obscure. We investigated individuals with obesity-related NAFLD and hypothesized that ß-hydroxybutyrate (ßOHB; the predominant ketone species) would be reduced and related to hepatic fat accumulation and insulin sensitivity. Furthermore, we hypothesized that ketones would impact skeletal muscle mitochondrial respiration in vitro. Hepatic fat was assessed by 1H-MRS in 22 participants in a parallel design, case control study [Control: n = 7, age 50 ± 6 yr, body mass index (BMI) 30 ± 1 kg/m2; NAFLD: n = 15, age 57 ± 3 yr, BMI 35 ± 1 kg/m2]. Plasma assessments were conducted in the fasted state. Whole body insulin sensitivity was determined by the gold-standard hyperinsulinemic-euglycemic clamp. The effect of ketone dose (0.5-5.0 mM) on mitochondrial respiration was conducted in human skeletal muscle cell culture. Fasting ßOHB, a surrogate measure of hepatic ketogenesis, was reduced in NAFLD (-15.6%, P < 0.01) and correlated negatively with liver fat (r2 = 0.21, P = 0.03) and positively with insulin sensitivity (r2 = 0.30, P = 0.01). Skeletal muscle mitochondrial oxygen consumption increased with low-dose ketones, attributable to increases in basal respiration (135%, P < 0.05) and ATP-linked oxygen consumption (136%, P < 0.05). NAFLD pathophysiology includes impaired hepatic ketogenesis, which is associated with hepatic fat accumulation and impaired insulin sensitivity. This reduced capacity to produce ketones may be a potential link between NAFLD and NAFLD-associated reductions in whole body insulin sensitivity, whereby ketone concentrations impact skeletal muscle mitochondrial respiration.


Subject(s)
3-Hydroxybutyric Acid/metabolism , Liver/metabolism , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Adult , Aged , Case-Control Studies , Fatty Acids, Nonesterified/metabolism , Female , Glucose Clamp Technique , Humans , In Vitro Techniques , Insulin Resistance , Ketone Bodies/metabolism , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , Proton Magnetic Resonance Spectroscopy
10.
Obesity (Silver Spring) ; 28(2): 293-302, 2020 02.
Article in English | MEDLINE | ID: mdl-31970913

ABSTRACT

OBJECTIVE: The objectives of this study were to assess the role of mitochondrial pyruvate carriers (MPCs) in adipocyte development in vitro and determine whether MPCs are regulated in vivo by high-fat feeding in male and female C57BL/6J mice. METHODS: This study utilized small interfering RNA-mediated knockdown to assess the requirement of MPC1 for adipogenesis in the 3T3-L1 model system. Treatment with UK-5099, a potent pharmacological MPC inhibitor, was also used to assess the loss of MPC activity. Western blot analysis was performed on adipose tissue samples from mice on a low-fat diet or a high-fat diet (HFD) for 12 weeks. RESULTS: The loss of MPC expression via small interfering RNA-mediated knockdown or pharmacological inhibition did not affect adipogenesis of 3T3-L1 cells. In vivo studies indicated that expression of MPCs was significantly decreased in brown adipose tissue of male mice, but not female, on an HFD. CONCLUSIONS: Although MPCs are essential for pyruvate transport, MPCs are not required for adipogenesis in vitro, suggesting that other substrates can be used for energy production when the MPC complex is not functional. Also, a significant decrease in MPC1 and 2 expression occurred in brown fat, but not white fat, of male mice fed an HFD.


Subject(s)
Adipogenesis/physiology , Adipose Tissue, Brown/metabolism , Diet, High-Fat/methods , Monocarboxylic Acid Transporters/metabolism , Obesity/physiopathology , Animals , Female , Male , Mice , Mice, Inbred C57BL
11.
Am J Physiol Endocrinol Metab ; 315(5): E1053-E1061, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30153067

ABSTRACT

An ethanolic extract of Artemisia scoparia (SCO) has metabolically favorable effects on adipocyte development and function in vitro and in vivo. In diet-induced obese mice, SCO supplementation significantly reduced fasting glucose and insulin levels. Given the importance of adipocyte lipolysis in metabolic health, we hypothesized that SCO modulates lipolysis in vitro and in vivo. Free fatty acids and glycerol were measured in the sera of mice fed a high-fat diet with or without SCO supplementation. In cultured 3T3-L1 adipocytes, the effects of SCO on lipolysis were assessed by measuring glycerol and free fatty acid release. Microarray analysis, qPCR, and immunoblotting were used to assess gene expression and protein abundance. We found that SCO supplementation of a high-fat diet in mice substantially reduces circulating glycerol and free fatty acid levels, and we observed a cell-autonomous effect of SCO to significantly attenuate tumor necrosis factor-α (TNFα)-induced lipolysis in cultured adipocytes. Although several prolipolytic and antilipolytic genes were identified by microarray analysis of subcutaneous and visceral adipose tissue from SCO-fed mice, regulation of these genes did not consistently correlate with SCO's ability to reduce lipolytic metabolites in sera or cell culture media. However, in the presence of TNFα in cultured adipocytes, SCO induced antilipolytic changes in phosphorylation of hormone-sensitive lipase and perilipin. Together, these data suggest that the antilipolytic effects of SCO on adipose tissue play a role in the ability of this botanical extract to improve whole body metabolic parameters and support its use as a dietary supplement to promote metabolic resiliency.


Subject(s)
Adipocytes/drug effects , Artemisia , Lipolysis/drug effects , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Cells, Cultured , Fatty Acids, Nonesterified/blood , Glycerol/blood , Mice , Perilipin-1/metabolism , Phosphorylation/drug effects , Sterol Esterase/metabolism , Tumor Necrosis Factor-alpha/pharmacology
12.
Int J Biol Macromol ; 46(2): 159-66, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20004685

ABSTRACT

Single molecule methods are becoming routine biophysical techniques for studying biological macromolecules. In mechanical unfolding of proteins, an externally applied force is used to induce the unfolding of individual protein molecules. Such experiments have revealed novel information that has significantly enhanced our understanding of the function and folding mechanisms of several types of proteins. To obtain information on the unfolding kinetics and the free energy landscape of the protein molecule from mechanical unfolding data, a Monte Carlo simulation based on a simple two-state kinetic model is often used. In this paper, we provide a detailed description of the procedure to perform such simulations and discuss the approximations and assumptions involved. We show that the appearance of the force versus extension curves from mechanical unfolding of proteins is affected by a variety of experimental parameters, such as the length of the protein polymer and the force constant of the cantilever. We also analyze the errors associated with different methods of data pooling and present a quantitative measure of how well the simulation results fit experimental data. These findings will be helpful in experimental design, artifact identification, and data analysis for single molecule studies of various proteins using the mechanical unfolding method.


Subject(s)
Biophysical Phenomena , Computer Simulation , Models, Molecular , Monte Carlo Method , Protein Folding , Proteins/chemistry , Proteins/metabolism , Kinetics , Microscopy, Atomic Force
SELECTION OF CITATIONS
SEARCH DETAIL
...