Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Mhealth Uhealth ; 12: e46347, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324358

ABSTRACT

BACKGROUND: As mobile health (mHealth) studies become increasingly productive owing to the advancements in wearable and mobile sensor technology, our ability to monitor and model human behavior will be constrained by participant receptivity. Many health constructs are dependent on subjective responses, and without such responses, researchers are left with little to no ground truth to accompany our ever-growing biobehavioral data. This issue can significantly impact the quality of a study, particularly for populations known to exhibit lower compliance rates. To address this challenge, researchers have proposed innovative approaches that use machine learning (ML) and sensor data to modify the timing and delivery of surveys. However, an overarching concern is the potential introduction of biases or unintended influences on participants' responses when implementing new survey delivery methods. OBJECTIVE: This study aims to demonstrate the potential impact of an ML-based ecological momentary assessment (EMA) delivery system (using receptivity as the predictor variable) on the participants' reported emotional state. We examine the factors that affect participants' receptivity to EMAs in a 10-day wearable and EMA-based emotional state-sensing mHealth study. We study the physiological relationships indicative of receptivity and affect while also analyzing the interaction between the 2 constructs. METHODS: We collected data from 45 healthy participants wearing 2 devices measuring electrodermal activity, accelerometer, electrocardiography, and skin temperature while answering 10 EMAs daily, containing questions about perceived mood. Owing to the nature of our constructs, we can only obtain ground truth measures for both affect and receptivity during responses. Therefore, we used unsupervised and supervised ML methods to infer affect when a participant did not respond. Our unsupervised method used k-means clustering to determine the relationship between physiology and receptivity and then inferred the emotional state during nonresponses. For the supervised learning method, we primarily used random forest and neural networks to predict the affect of unlabeled data points as well as receptivity. RESULTS: Our findings showed that using a receptivity model to trigger EMAs decreased the reported negative affect by >3 points or 0.29 SDs in our self-reported affect measure, scored between 13 and 91. The findings also showed a bimodal distribution of our predicted affect during nonresponses. This indicates that this system initiates EMAs more commonly during states of higher positive emotions. CONCLUSIONS: Our results showed a clear relationship between affect and receptivity. This relationship can affect the efficacy of an mHealth study, particularly those that use an ML algorithm to trigger EMAs. Therefore, we propose that future work should focus on a smart trigger that promotes EMA receptivity without influencing affect during sampled time points.


Subject(s)
Ecological Momentary Assessment , Wearable Electronic Devices , Humans , Machine Learning , Emotions , Affect
2.
Article in English | MEDLINE | ID: mdl-32432212

ABSTRACT

High levels of stress during pregnancy increase the chances of having a premature or low-birthweight baby. Perceived self-reported stress does not often capture or align with the physiological and behavioral response. But what if there was a self-report measure that could better capture the physiological response? Current perceived stress self-report assessments require users to answer multi-item scales at different time points of the day. Reducing it to one question, using microinteraction-based ecological momentary assessment (micro-EMA, collecting a single in situ self-report to assess behaviors) allows us to identify smaller or more subtle changes in physiology. It also allows for more frequent responses to capture perceived stress while at the same time reducing burden on the participant. We propose a framework for selecting the optimal micro-EMA that combines unbiased feature selection and unsupervised Agglomerative clustering. We test our framework in 18 women performing 16 activities in-lab wearing a Biostamp, a NeuLog, and a Polar chest strap. We validated our results in 17 pregnant women in real-world settings. Our framework shows that the question "How worried were you?" results in the highest accuracy when using a physiological model. Our results provide further in-depth exposure to the challenges of evaluating stress models in real-world situations.

SELECTION OF CITATIONS
SEARCH DETAIL
...