Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(2): e1011798, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324585

ABSTRACT

The vascular endothelial growth factor (VEGF) family of cytokines are key drivers of blood vessel growth and remodeling. These ligands act via multiple VEGF receptors (VEGFR) and co-receptors such as Neuropilin (NRP) expressed on endothelial cells. These membrane-associated receptors are not solely expressed on the cell surface, they move between the surface and intracellular locations, where they can function differently. The location of the receptor alters its ability to 'see' (access and bind to) its ligands, which regulates receptor activation; location also alters receptor exposure to subcellularly localized phosphatases, which regulates its deactivation. Thus, receptors in different subcellular locations initiate different signaling, both in terms of quantity and quality. Similarly, the local levels of co-expression of other receptors alters competition for ligands. Subcellular localization is controlled by intracellular trafficking processes, which thus control VEGFR activity; therefore, to understand VEGFR activity, we must understand receptor trafficking. Here, for the first time, we simultaneously quantify the trafficking of VEGFR1, VEGFR2, and NRP1 on the same cells-specifically human umbilical vein endothelial cells (HUVECs). We build a computational model describing the expression, interaction, and trafficking of these receptors, and use it to simulate cell culture experiments. We use new quantitative experimental data to parameterize the model, which then provides mechanistic insight into the trafficking and localization of this receptor network. We show that VEGFR2 and NRP1 trafficking is not the same on HUVECs as on non-human ECs; and we show that VEGFR1 trafficking is not the same as VEGFR2 trafficking, but rather is faster in both internalization and recycling. As a consequence, the VEGF receptors are not evenly distributed between the cell surface and intracellular locations, with a very low percentage of VEGFR1 being on the cell surface, and high levels of NRP1 on the cell surface. Our findings have implications both for the sensing of extracellular ligands and for the composition of signaling complexes at the cell surface versus inside the cell.


Subject(s)
Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-1 , Humans , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Signal Transduction , Phosphorylation , Neuropilin-1/metabolism
2.
Angiogenesis ; 27(1): 67-89, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37695358

ABSTRACT

FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Live-imaging of temporally controlled sFLT1 release from the endoplasmic reticulum showed clathrin-dependent sFLT1 trafficking at the Golgi into secretory vesicles that then trafficked to the plasma membrane. Depletion of STX6 altered vessel sprouting in 3D, suggesting that endothelial cell sFLT1 secretion influences proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor Receptor-1 , Animals , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Clathrin/metabolism , Zebrafish/metabolism
3.
Mol Biol Cell ; : mbcE23030094, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37672338

ABSTRACT

Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by KLHL16 mutations. KLHL16 encodes gigaxonin, which regulates intermediate filament (IF) turnover. Previous neuropathological studies and examination of postmortem brain tissue in the current study revealed involvement of astrocytes in GAN. To develop a clinically-relevant model, we reprogrammed skin fibroblasts from seven GAN patients to pluripotent stem cells (iPSCs), which were used to generate neural progenitor cells (NPCs), astrocytes, and brain organoids. Multiple isogenic control clones were derived via CRISPR/Cas9 gene editing of one patient line carrying the G332R gigaxonin mutation. All GAN iPSCs were deficient for gigaxonin and displayed patient-specific increased vimentin expression. GAN NPCs had lower nestin expression and fewer nestin-positive cells compared to isogenic controls, but nestin morphology was unaffected. GAN brain organoids were marked by the presence of neurofilament and GFAP aggregates. GAN iPSC-astrocytes displayed striking dense perinuclear vimentin and GFAP accumulations and abnormal nuclear morphology. In over-expression systems, GFAP oligomerization and perinuclear aggregation were augmented in the presence of vimentin. GAN patient cells with large perinuclear vimentin aggregates accumulated significantly more nuclear KLHL16 mRNA compared to cells without vimentin aggregates. As an early effector of KLHL16 mutations, vimentin may be a potential target in GAN.

4.
bioRxiv ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993491

ABSTRACT

Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by KLHL16 mutations. KLHL16 encodes gigaxonin, a regulator of intermediate filament (IF) protein turnover. Previous neuropathological studies and our own examination of postmortem GAN brain tissue in the current study revealed astrocyte involvement in GAN. To study the underlying mechanisms, we reprogrammed skin fibroblasts from seven GAN patients carrying different KLHL16 mutations to iPSCs. Isogenic controls with restored IF phenotypes were derived via CRISPR/Cas9 editing of one patient carrying a homozygous missense mutation (G332R). Neural progenitor cells (NPCs), astrocytes, and brain organoids were generated through directed differentiation. All GAN iPSC lines were deficient for gigaxonin, which was restored in the isogenic control. GAN iPSCs displayed patient-specific increased vimentin expression, while GAN NPCs had decreased nestin expression compared to isogenic control. The most striking phenotypes were observed in GAN iPSC-astrocytes and brain organoids, which exhibited dense perinuclear IF accumulations and abnormal nuclear morphology. GAN patient cells with large perinuclear vimentin aggregates accumulated nuclear KLHL16 mRNA. In over-expression studies, GFAP oligomerization and perinuclear aggregation were potentiated in the presence of vimentin. As an early effector of KLHL16 mutations, vimentin may serve as a potential therapeutic target in GAN.

5.
Elife ; 122023 03 29.
Article in English | MEDLINE | ID: mdl-36989130

ABSTRACT

Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized linker of the nucleoskeleton and cytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted junction function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts, and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and junction integrity.


Subject(s)
Endothelial Cells , Microtubule-Associated Proteins , Animals , Mice , Microtubule-Associated Proteins/metabolism , Endothelial Cells/metabolism , Zebrafish/metabolism , Nuclear Proteins/metabolism , Microtubules/metabolism , Intercellular Junctions/metabolism
6.
bioRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747809

ABSTRACT

FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Depletion of STX6 altered vessel sprouting in a 3D angiogenesis model, indicating that endothelial cell sFLT1 secretion is important for proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.

7.
Adv Mater ; 30(52): e1805007, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30387230

ABSTRACT

The development and progression of colorectal cancer (CRC) is closely related to gut microbiome. Here, the impact of lipopolysaccharide (LPS), one of the most prevalent products in the gut microbiome, on CRC immunotherapy is investigated. It is found that LPS is abundant in orthotopic CRC tissue and is associated with low responses to anti-PD-L1 mAb therapy, and clearance of Gram-negative bacteria from the gut using polymyxin B (PmB) or blockade of Toll-like receptor 4 using TAK-242 will both relieve the immunosuppressive microenvironment and boost T-cell infiltration into the CRC tumor. Further, an engineered LPS-targeting fusion protein is designed and its coding sequence is loaded into a lipid-protamine-DNA (LPD) nanoparticle system for selective expression of LPS trap protein and blocking LPS inside the tumor, and this nanotrapping system significantly relieves the immunosuppressive microenvironment and boosts anti-PD-L1 mAb therapy against CRC tumors. This LPS trap system even attenuates CRC liver metastasis when applied, suggesting the importance of blocking LPS in the gut-liver axis. The strategy applied here may provide a useful new way for treating CRC as well as other epithelial cancers that interact with mucosa microbiome.


Subject(s)
Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Immunotherapy , Lipopolysaccharides/metabolism , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Animals , Cell Line, Tumor , Colorectal Neoplasms/immunology , Gastrointestinal Microbiome/immunology , Gram-Negative Bacteria/metabolism , Liver Neoplasms/immunology , Mice , Nanoparticles/administration & dosage , Neoplasm Transplantation
8.
Nanotoxicology ; 12(7): 677-698, 2018 09.
Article in English | MEDLINE | ID: mdl-29804493

ABSTRACT

To understand the influence of carboxylation on the interaction of carbon nanotubes with cells, the amount of pristine multi-walled carbon nanotubes (P-MWNTs) or carboxylated multi-walled carbon nanotubes (C-MWNTs) coated with Pluronic® F-108 that were accumulated by macrophages was measured by quantifying CNTs extracted from cells. Mouse RAW 264.7 macrophages and differentiated human THP-1 (dTHP-1) macrophages accumulated 80-100 times more C-MWNTs than P-MWNTs during a 24-h exposure at 37 °C. The accumulation of C-MWNTs by RAW 264.7 cells was not lethal; however, phagocytosis was impaired as subsequent uptake of polystyrene beads was reduced after a 20-h exposure to C-MWNTs. The selective accumulation of C-MWNTs suggested that there might be receptors on macrophages that bind C-MWNTs. The binding of C-MWNTs to macrophages was measured as a function of concentration at 4 °C in the absence of serum to minimize the potential interference by serum proteins or temperature-dependent uptake processes. The result was that the cells bound 8.7 times more C-MWNTs than P-MWNTs, consistent with the selective accumulation of C-MWNTs at 37 °C. In addition, serum strongly antagonized the binding of C-MWTS to macrophages, suggesting that serum contained inhibitors of binding. Moreover, inhibitors of class A scavenger receptor (SR-As) reduced the binding of C-MWNTs by about 50%, suggesting that SR-As contribute to the binding and endocytosis of C-MWNTs in macrophages but that other receptors may also be involved. Altogether, the evidence supports the hypothesis that macrophages contain binding sites selective for C-MWNTs that facilitate the high accumulation of C-MWNTs compared to P-MWNTs.


Subject(s)
Macrophages/metabolism , Nanotubes, Carbon/chemistry , Poloxamer/chemistry , A549 Cells , Adsorption , Animals , Cell Culture Techniques , Cell Proliferation/drug effects , Cell Survival/drug effects , Endocytosis/drug effects , Endocytosis/physiology , Humans , Macrophages/drug effects , Mice , Nanotubes, Carbon/toxicity , Particle Size , Phagocytosis/drug effects , Phagocytosis/physiology , Poloxamer/toxicity , RAW 264.7 Cells , Surface Properties , THP-1 Cells , Temperature
10.
Acta Biomater ; 65: 405-416, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29037897

ABSTRACT

Oral administration of nanocarriers remains a significant challenge in the pharmaceutical sciences. The nanocarriers must efficiently overcome multiple gastrointestinal barriers including the harsh gastrointestinal environment, the mucosal layer, and the epithelium. Neutral hydrophilic surfaces are reportedly necessary for mucus permeation, but hydrophobic and cationic surfaces are important for efficient epithelial absorption. To accommodate these conflicting surface property requirements, we developed a strategy to modify nanocarrier surfaces with cationic cell-penetrating peptides (CPP) concealed by a hydrophilic succinylated casein (SCN) layer. SCN is a mucus-inert natural material specifically degraded in the intestine, thus protecting nanocarriers from the harsh gastric environment, facilitating their mucus permeation, and inducing exposure of CPPs after degradation for further effective transepithelial transport. Quantum dots doped hollow silica nanoparticles (HSQN) with a diameter around 180 nm was used as the nanocarrier and demonstrated as high as 50% loading efficacy of paclitaxel, a model drug with poor solubility and permeability. The dual layer modification strategy prevented premature drug leakage in stomach and maintained high mucus permeation (the trajectory spanned 9-fold larger area than single CPP modification). After intestinal degradation of SCN by trypsin, these nanocarriers exhibited strong interaction with epithelial membranes and a 5-fold increase in cellular uptake. Significant transepithelial transport and intestinal distribution were also observed for this dual-modified formulation. A pharmacokinetics study on the paclitaxel-loaded nanocarrier found 40% absolute bioavailability and 7.8-fold higher AUC compared to oral Taxol®. Compared with single CPP modified nanocarriers, our formulation showed increased in vivo efficacy and tumor accumulation of the model drug with negligible intestinal toxicity. In summary, sequential modification with CPP and SCN layers on HSQN offers a potential strategy to overcome the multiple barriers of the gastrointestinal tract. STATEMENT OF SIGNIFICANCE: Oral administration of nanocarriers remains a big challenge due to the multiple gastrointestinal barriers. In order to achieve both strong mucus permeation and efficient epithelial absorption, we modified the surface of silica nanoparticles with two layers: cell penetrating peptide (CPP) layer and succinylated casein (SCN) layer. The newly developed nanoformulations are demonstrated to have the following advantages: 1) versatile carrier with easy preparation, 2) high drug loading especially for poor soluble molecules, 3) reduced drug leakage in the stomach, 4) effective mucus penetration and transepithelial transport and 5) good biocompatibility, which in all indicate a great potential of this bilayer-modification strategy to facilitate the oral delivery of therapeutic agents.


Subject(s)
Drug Carriers/chemistry , Gastrointestinal Tract/metabolism , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacokinetics , Biocompatible Materials , Biological Availability , Caseins/chemistry , Cell Line, Tumor , Cell-Penetrating Peptides/chemistry , Drug Carriers/pharmacokinetics , Female , Humans , Hydrophobic and Hydrophilic Interactions , Intestinal Mucosa/metabolism , Mice, Inbred BALB C , Mucus/metabolism , Paclitaxel/administration & dosage , Paclitaxel/pharmacokinetics , Porosity , Quantum Dots
11.
Chem Commun (Camb) ; 52(82): 12155-12158, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27711272

ABSTRACT

Tremendous effort has been made to improve stability and delivery efficacy of small RNA therapeutics. However, nearly all current nano-encapsulation carriers utilize the critical balance between only two interacting parameters: RNA-binding electrostatic interactions and nanoparticle-stabilizing hydrophobic interactions. We report the development of intercalation-meditated nucleic acid (IMNA) nanoparticles, which utilize intercalation as a third interaction to enhance small RNA delivery. This toolbox expansion of interaction parameters may inspire the use of additional forces in nanoparticle drug carriers to increase potency and stability.


Subject(s)
Drug Delivery Systems , Intercalating Agents/chemistry , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Drug Carriers , Gene Silencing , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Nanoparticles/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...