Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 93(6): 705-714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644583

ABSTRACT

Ecological similarity plays an important role in biotic interactions. Increased body size similarity of competing species, for example, increases the strength of their biotic interactions. Body sizes of many exothermic species are forecast to be altered under global warming, mediating shifts in existing trophic interactions among species, in particular for species with different thermal niches. Temperate rocky reefs along the southeast coast of Australia are located in a climate warming hotspot and now house a mixture of temperate native fish species and poleward range-extending tropical fishes (vagrants), creating novel species assemblages. Here, we studied the relationship between body size similarity and trophic overlap between individual temperate native and tropical vagrant fishes. Dietary niche overlap between vagrant and native fish species increased as their body sizes converged, based on both stomach content composition (short-term diet), stable isotope analyses (integrated long-term diet) and similarity in consumed prey sizes. We conclude that the warming-induced faster growth rates of tropical range-extending fish species at their cool water ranges will continue to converge their body size towards and strengthen their degree of trophic interactions and dietary overlap with co-occurring native temperate species under increasing ocean warming. The strengthening of these novel competitive interactions is likely to drive changes to temperate food web structures and reshuffle existing species community structures.


Subject(s)
Body Size , Climate Change , Fishes , Food Chain , Animals , Fishes/physiology , Diet/veterinary , Gastrointestinal Contents , Australia
2.
Sci Total Environ ; 703: 134598, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31767323

ABSTRACT

As ocean waters warm due to climate change, tropical species are shifting their ranges poleward to remain within their preferred thermal niches. As a result, novel communities are emerging in which tropical species interact with local temperate species, competing for similar resources, such as food and habitat. To understand how range-extending coral reef fish species perform along their leading edges when invading temperate ecosystems, we studied proxies of their fitness, including somatic growth (length increase), feeding rates, and body condition, along a 730-km latitudinal gradient situated in one of the global warming hotspots. We also studied co-occurring temperate species to assess how their fitness is affected along their trailing edges under ocean warming. We predicted that tropical fishes would experience reduced performance as they enter novel communities with suboptimal environmental conditions. Our study shows that although tropical fish maintain their body condition (based on three proxies) and stomach fullness across all invaded temperate latitudes, they exhibit decreased in situ growth rates, activity levels, and feeding rates in their novel temperate environment, likely a result of lower metabolic rates in cooler waters. We posit that tropical fishes face a growth-maintenance trade-off under the initial phases of ocean warming (i.e. at their leading edges), allowing them to maintain their body condition in cooler temperate waters but at the cost of slower growth. Temperate fish exhibited no distinct patterns in body condition and performance along the natural temperature gradient studied. However, in the face of future climate change, when metabolism is no longer stymied by low water temperatures, tropical range-extending species are likely to approach their native-range growth rates along their leading edges, ultimately leading to increased competitive interactions with local species in temperate ecosystems.


Subject(s)
Coral Reefs , Animals , Cold Temperature , Fishes , Global Warming
3.
Glob Chang Biol ; 26(2): 721-733, 2020 02.
Article in English | MEDLINE | ID: mdl-31846164

ABSTRACT

Changing climate is forcing many terrestrial and marine species to extend their ranges poleward to stay within the bounds of their thermal tolerances. However, when such species enter higher latitude ecosystems, they engage in novel interactions with local species, such as altered predator-prey dynamics and competition for food. Here, we evaluate the trophic overlap between range-extending and local fish species along the east coast of temperate Australia, a hotspot for ocean warming and species range extensions. Stable isotope ratios (δ15 N and δ13 C) of muscle tissue and stomach content analysis were used to quantify overlap of trophic niche space between vagrant tropical and local temperate fish communities along a 730 km (6°) latitudinal gradient. Our study shows that in recipient temperate ecosystems, sympatric tropical and temperate species do not overlap significantly in their diet-even though they forage on broadly similar prey groups-and are therefore unlikely to compete for trophic niche space. The tropical and temperate species we studied, which are commonly found in shallow-water coastal environments, exhibited moderately broad niche breadths and local-scale dietary plasticity, indicating trophic generalism. We posit that because these species are generalists, they can co-exist under current climate change, facilitating the existence of novel community structures.


Subject(s)
Climate Change , Coral Reefs , Animals , Australia , Ecosystem , Fishes
SELECTION OF CITATIONS
SEARCH DETAIL
...