Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Genet Biol ; 32(3): 135-44, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11343400

ABSTRACT

Increases in both the levels and the activity of serine proteinase have been previously described in the senescing mushroom Agaricus bisporus. cDNA encoding serine proteinase was amplified by reverse transcriptase-polymerase chain reaction using a degenerate primer based on the N-terminal sequence of a previously isolated A. bisporus serine proteinase and then cloned. The cDNA was sequenced and shown to be homologous to those of other fungal serine proteinases. Northern analysis showed that this serine proteinase gene (Spr1) was not expressed in freshly harvested sporophores but was strongly up-regulated postharvest and found almost entirely in the stipe of the sporophore (approximately 0.08% of mRNAs 2 days after harvest). Low-level expression was detectable in the flesh (pileus trama) and gill (lamellae) tissues of the cap, but none was detected in the skin (pilei pellis). In three of the cloned cDNAs, sequence analysis showed that the poly(A) tail starts at different positions. Expression of Spr1 in Escherichia coli caused restricted colony growth.


Subject(s)
Agaricus/enzymology , Cloning, Molecular , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Agaricus/genetics , Agaricus/growth & development , Amino Acid Sequence , Base Sequence , DNA, Complementary , Escherichia coli/genetics , Gene Expression Regulation, Fungal , Genes, Fungal , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Serine Endopeptidases/chemistry , Transcription, Genetic , Transformation, Genetic
2.
Plant Cell ; 7(6): 773-83, 1995 Jun.
Article in English | MEDLINE | ID: mdl-12242384

ABSTRACT

The A mating-type locus of the mushroom Coprinus cinereus contains three or more paralogous pairs of genes encoding two families of homeodomain proteins (HD1 and HD2). A successful mating brings together different allelic forms of at least one gene, and this is sufficient to trigger initial steps in sexual development. Previous studies have suggested that development is regulated by heterodimerization between HD1 and HD2 proteins. In this report, we describe 5[prime] gene deletions and 5[prime] end exchanges showing that the N-terminal regions of the proteins are essential for choosing a compatible partner but not for regulating gene transcription. Using an in vitro glutathione S-transferase association assay, we demonstrated heterodimerization between HD1 and HD2 proteins and found that heterodimerization only occurs between compatible protein combinations. The N-terminal regions of the proteins were sufficient to mediate dimerization, and N-terminal swaps resulted in a predicted change in dimerization specificity. By analyzing the N-terminal amino acid sequences of HD1 proteins, we identified two potential coiled-coil motifs whose relative positions vary in paralogous proteins but are both required for in vivo function.

SELECTION OF CITATIONS
SEARCH DETAIL
...