Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol ; 403: 131788, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38244893

ABSTRACT

BACKGROUND: Clozapine-induced myocarditis and cardiomyopathy are difficult to detect clinically and may be fatal if not detected early. The current/routine biomarkers for clozapine-induced myocarditis are non-specific indicators of inflammation (C-reactive protein) or cardiomyocyte damage (troponins I and T) that lack sensitivity, and for which changes often arise too late to be clinically useful. METHODS: The Clozapine Safety Study was a prospective, longitudinal, observational study to determine what, if any, the plasma concentrations of clozapine, N-desmethylclozapine, and clozapine-N-oxide in patients contribute to cardiotoxicity. Samples were collected and analysed using liquid chromatography mass spectrometry over a 41-month period from patients in the Auckland District Health Board. RESULTS: Sixty-seven patients were included. Six patients were diagnosed with myocarditis; none were diagnosed with cardiomyopathy in the study period. In patients not undergoing dose titration, clozapine biotransformation may shift to the N-oxide pathway rather than the N-desmethyl pathway with increasing dose. During dose titration, the timeframe in which myocarditis occurs, the rate of increase in the plasma concentration of clozapine-N-oxide, as well as the ratio of N-oxidation relative to N-desmethylation, were significantly higher in patients diagnosed with myocarditis. CONCLUSIONS: The assessment of clozapine-N-oxide formation, and N-oxidation relative to N-desmethylation ratios during treatment, may help identify a biomarker to aid the early detection of patients at risk of developing clozapine-induced cardiotoxicity.


Subject(s)
Antipsychotic Agents , Cardiomyopathies , Clozapine , Myocarditis , Humans , Antipsychotic Agents/adverse effects , Cardiomyopathies/chemically induced , Cardiomyopathies/diagnosis , Cardiotoxicity/diagnosis , Clozapine/adverse effects , Longitudinal Studies , Myocarditis/chemically induced , Myocarditis/diagnosis , Oxides/adverse effects , Prospective Studies
2.
Xenobiotica ; 54(1): 26-37, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38108307

ABSTRACT

Clozapine is an effective atypical antipsychotic indicated for treatment-resistant schizophrenia, but is under-prescribed due to the risk of severe adverse drug reactions such as myocarditis.A mechanistic understanding of clozapine cardiotoxicity remains elusive.This study aimed to investigate the contribution of selected CYP isoforms to cycling between clozapine and its major circulating metabolites, N-desmethylclozapine and clozapine-N-oxide, with the potential for reactive species production.CYP supersome™-based in vitro techniques were utilised to quantify specific enzyme activity associated with clozapine, clozapine-N-oxide and N-desmethylclozapine metabolism.The formation of reactive species within each incubation were quantified, and known intermediates detected.CYP3A4 predominately catalysed clozapine-N-oxide formation from clozapine and was associated with concentration-dependent reactive species production, whereas isoforms favouring the N-desmethylclozapine pathway (CYP2C19 and CYP1A2) did not produce reactive species.Extrahepatic isoforms CYP2J2 and CYP1B1 were also associated with the formation of clozapine-N-oxide and N-desmethylclozapine but did not favour one metabolic pathway over another.Unique to this investigation is that various CYP isoforms catalyse clozapine-N-oxide reduction to clozapine.This process was associated with the concentration-dependent formation of reactive species with CYP3A4, CYP1B1 and CYP1A1 that did not correlate with known reactive intermediates, implicating metabolite cycling and reactive oxygen species in the mechanism of clozapine-induced toxicity.


Subject(s)
Antipsychotic Agents , Clozapine , Reactive Oxygen Species , Cytochrome P-450 CYP3A/metabolism , Antipsychotic Agents/toxicity , Antipsychotic Agents/metabolism , Protein Isoforms , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL
...