Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
bioRxiv ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38617325

ABSTRACT

Molecular details of genome packaging are little understood for the majority of viruses. In enteroviruses (EVs), cleavage of the structural protein VP0 into VP4 and VP2 is initiated by the incorporation of RNA into the assembling virion and is essential for infectivity. We have applied a combination of bioinformatic, molecular and structural approaches to generate the first high-resolution structure of an intermediate in the assembly pathway, termed a provirion, which contains RNA and intact VP0. We have demonstrated an essential role of VP0 E096 in VP0 cleavage independent of RNA encapsidation and generated a new model of capsid maturation, supported by bioinformatic analysis. This provides a molecular basis for RNA-dependence, where RNA induces conformational changes required for VP0 maturation, but that RNA packaging itself is not sufficient to induce maturation. These data have implications for understanding production of infectious virions and potential relevance for future vaccine and antiviral drug design.

3.
J Gen Virol ; 104(6)2023 06.
Article in English | MEDLINE | ID: mdl-37390009

ABSTRACT

Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation.We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilized virus-like particles (VLPs) in Pichia pastoris.The stabilized VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilization, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralize virus in vitro. Therefore, anti-EVA71 neutralizing antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.


Subject(s)
Enterovirus Infections , Enterovirus , Poliovirus , Vaccines , Child , Humans , Child, Preschool , Antigens, Viral/genetics , Poliovirus/genetics , Antibodies, Viral
4.
Sci Transl Med ; 15(699): eadh8005, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37285399

ABSTRACT

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. Immune checkpoint blockade has improved survival for many patients with NSCLC, but most fail to obtain long-term benefit. Understanding the factors leading to reduced immune surveillance in NSCLC is critical in improving patient outcomes. Here, we show that human NSCLC harbors large amounts of fibrosis that correlates with reduced T cell infiltration. In murine NSCLC models, the induction of fibrosis led to increased lung cancer progression, impaired T cell immune surveillance, and failure of immune checkpoint blockade efficacy. Associated with these changes, we observed that fibrosis leads to numerically and functionally impaired dendritic cells and altered macrophage phenotypes that likely contribute to immunosuppression. Within cancer-associated fibroblasts, distinct changes within the Col13a1-expressing population suggest that these cells produce chemokines to recruit macrophages and regulatory T cells while limiting recruitment of dendritic cells and T cells. Targeting fibrosis through transforming growth factor-ß receptor signaling overcame the effects of fibrosis to enhance T cell responses and improved the efficacy of immune checkpoint blockade but only in the context of chemotherapy. Together, these data suggest that fibrosis in NSCLC leads to reduced immune surveillance and poor responsiveness to checkpoint blockade and highlight antifibrotic therapies as a candidate strategy to overcome immunotherapeutic resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Immune Checkpoint Inhibitors , Tumor Microenvironment , Immunotherapy
5.
Blood ; 141(26): 3153-3165, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37130030

ABSTRACT

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have demonstrated impressive activity against relapsed or refractory B-cell cancers yet fail to induce durable remissions for nearly half of all patients treated. Enhancing the efficacy of this therapy requires detailed understanding of the molecular circuitry that restrains CAR-driven antitumor T-cell function. We developed and validated an in vitro model that drives T-cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains, central components of CAR structure and function, contribute to T-cell failure. We found that chronic activation of CD28-based CARs results in activation of classical T-cell exhaustion programs and development of dysfunctional cells that bear the hallmarks of exhaustion. In contrast, 41BB-based CARs activate a divergent molecular program and direct differentiation of T cells into a novel cell state. Interrogation using CAR T cells from a patient with progressive lymphoma confirmed the activation of this novel program in a failing clinical product. Furthermore, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is directly responsible for impairing CAR T-cell function. These findings identify that costimulatory domains are critical regulators of CAR-driven T-cell failure and that targeted interventions are required to overcome costimulation-dependent dysfunctional programs.


Subject(s)
Lymphoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , Immunotherapy, Adoptive/methods , T-Lymphocytes , Lymphoma/etiology , Antigens, CD19
6.
Cancer Immunol Res ; 11(8): 1055-1067, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37229629

ABSTRACT

Intratumoral T-cell dysfunction is a hallmark of pancreatic tumors, and efforts to improve dendritic cell (DC)-mediated T-cell activation may be critical in treating these immune therapy unresponsive tumors. Recent evidence indicates that mechanisms that induce dysfunction of type 1 conventional DCs (cDC1) in pancreatic adenocarcinomas (PDAC) are drivers of the lack of responsiveness to checkpoint immunotherapy. However, the impact of PDAC on systemic type 2 cDC2 development and function has not been well studied. Herein, we report the analysis of 3 cohorts, totaling 106 samples, of human blood and bone marrow (BM) from patients with PDAC for changes in cDCs. We found that circulating cDC2s and their progenitors were significantly decreased in the blood of patients with PDAC, and repressed numbers of cDC2s were associated with poor prognosis. Serum cytokine analyses identified IL6 as significantly elevated in patients with PDAC and negatively correlated with cDC numbers. In vitro, IL6 impaired the differentiation of cDC1s and cDC2s from BM progenitors. Single-cell RNA sequencing analysis of human cDC progenitors in the BM and blood of patients with PDAC showed an upregulation of the IL6/STAT3 pathway and a corresponding impairment of antigen processing and presentation. These results suggested that cDC2s were systemically suppressed by inflammatory cytokines, which was linked to impaired antitumor immunity.


Subject(s)
Interleukin-6 , Pancreatic Neoplasms , Humans , Interleukin-6/metabolism , Pancreatic Neoplasms/pathology , Dendritic Cells , Cytokines/metabolism
7.
Int J Biol Macromol ; 241: 124519, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37085072

ABSTRACT

Enterovirus A71 (EVA71) belongs to the Picornaviridae family and is the main etiological agent of hand, foot, and mouth disease (HFMD). There is no approved antiviral against EVA71, and therefore the search for novel anti-EVA71 therapeutics is essential. In this context, the antiviral activity of proteins isolated from snake venoms has been reported against a range of viruses. Here, the proteins CM10 and CM14 isolated from Bothrops moojeni, and Crotamin and PLA2CB isolated from Crotalus durissus terrificus were investigated for their antiviral activity against EVA71 infection. CM14 and Crotamin possessed a selective index (SI) of 170.8 and 120.4, respectively, while CM10 and PLA2CB had an SI of 67.4 and 12.5, respectively. CM14 inhibited all steps of viral replication (protective effect: 76 %; virucidal: 99 %; and post-entry: 99 %). Similarly, Crotamin inhibited up to 99 % of three steps. In contrast, CM10 and PLA2CB impaired one or two steps of EVA71 replication, respectively. Further dose-response assays using increasing titres of EVA71 were performed and CM14 and Crotamin retained functionality with high concentrations of EVA71 (up to 1000 TCID50). These data demonstrate that proteins isolated from snake venom are potent inhibitors of EVA71 and could be used as scaffolds for future development of novel antivirals.


Subject(s)
Crotalid Venoms , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Animals , Brazil , Proteins , Antiviral Agents/pharmacology , Antigens, Viral , Snakes , Phospholipases A2
8.
J Exp Med ; 220(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-36951731

ABSTRACT

Tumor-associated macrophages (TAMs) are abundant in pancreatic ductal adenocarcinomas (PDACs). While TAMs are known to proliferate in cancer tissues, the impact of this on macrophage phenotype and disease progression is poorly understood. We showed that in PDAC, proliferation of TAMs could be driven by colony stimulating factor-1 (CSF1) produced by cancer-associated fibroblasts. CSF1 induced high levels of p21 in macrophages, which regulated both TAM proliferation and phenotype. TAMs in human and mouse PDACs with high levels of p21 had more inflammatory and immunosuppressive phenotypes. p21 expression in TAMs was induced by both stromal interaction and/or chemotherapy treatment. Finally, by modeling p21 expression levels in TAMs, we found that p21-driven macrophage immunosuppression in vivo drove tumor progression. Serendipitously, the same p21-driven pathways that drive tumor progression also drove response to CD40 agonist. These data suggest that stromal or therapy-induced regulation of cell cycle machinery can regulate both macrophage-mediated immune suppression and susceptibility to innate immunotherapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Humans , Pancreatic Neoplasms/metabolism , Macrophages/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Immunotherapy , Cell Proliferation , Tumor Microenvironment , Cell Line, Tumor
9.
bioRxiv ; 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36747791

ABSTRACT

Chimeric antigen receptor (CAR) engineered T cells often fail to enact effector functions after infusion into patients. Understanding the biological pathways that lead CAR T cells to failure is of critical importance in the design of more effective therapies. We developed and validated an in vitro model that drives T cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains contribute to T cell failure. We found that dysfunctional CD28-based CARs targeting CD19 bear hallmarks of classical T cell exhaustion while dysfunctional 41BB-based CARs are phenotypically, transcriptionally and epigenetically distinct. We confirmed activation of this unique transcriptional program in CAR T cells that failed to control clinical disease. Further, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is a significant contributor to this dysfunction and disruption of FOXO3 improves CAR T cell function. These findings identify that chronic activation of 41BB leads to novel state of T cell dysfunction that can be alleviated by genetic modification of FOXO3. Summary: Chronic stimulation of CARs containing the 41BB costimulatory domain leads to a novel state of T cell dysfunction that is distinct from T cell exhaustion.

10.
Viruses ; 15(2)2023 01 23.
Article in English | MEDLINE | ID: mdl-36851527

ABSTRACT

Virus-like particles (VLPs), composed of the small hepatitis B virus surface antigen (HBsAgS), are the antigenic components of the hepatitis B virus (HBV) vaccine and represent the backbones for a chimeric anti-malaria vaccine and various vaccine candidates. Biological vectors have to face pre-existing anti-vector immune responses due to previous immune exposure. Vector recognition after natural infections or vaccinations can result in unwarranted outcomes, with compromising effects on clinical outcomes. In order to evaluate the impact of a pre-existing anti-HBsAgS immune response, we developed mutant VLPs composed of subunits with reduced HBsAgS-specific antigenicity. The insertion of a Plasmodium falciparum circumsporozoite protein (CSP)-derived epitope as a read-out allowed the assessment of wild type (wt) and mutant VLPs in the context of a pre-existing immune response. Mutant and wt VLP platforms with a CSP-epitope insert are immunogenic and have the ability to generate anti-CSP antibody responses in both naïve BALB/c mice and mice with a pre-existing anti-HBsAgS immune response, but with superior anti-CSP responses in mice with a pre-existing immunity. The data indicate that previous HBsAgS exposure facilitates enhanced antibody responses against foreign epitopes delivered by the HBsAgS platform, and, in this context, the state of immune sensitization alters the outcome of subsequent vaccinations.


Subject(s)
Hepatitis B Surface Antigens , Immunogenicity, Vaccine , Malaria Vaccines , Plasmodium falciparum , Vaccines, Virus-Like Particle , Animals , Mice , Epitopes/genetics , Epitopes/immunology , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/immunology , Immunogenicity, Vaccine/genetics , Immunogenicity, Vaccine/immunology , Malaria/prevention & control , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Mice, Inbred BALB C , Models, Animal , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Vaccination , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology
11.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778240

ABSTRACT

Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation. We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilised virus-like particles (VLPs) in Pichia pastoris . The stabilised VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilisation, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralise virus in vitro . Therefore, the anti-EVA71 neutralising antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies.

12.
ChemMedChem ; 18(10): e202200541, 2023 05 16.
Article in English | MEDLINE | ID: mdl-36792530

ABSTRACT

The Enterovirus (EV) genus includes several important human and animal pathogens. EV-A71, EV-D68, poliovirus (PV), and coxsackievirus (CV) outbreaks have affected millions worldwide, causing a range of upper respiratory, skin, and neuromuscular diseases, including acute flaccid myelitis, and hand-foot-and-mouth disease. There are no FDA-approved antiviral therapeutics for these enteroviruses. This study describes novel antiviral compounds targeting the conserved non-structural viral protein 2C with low micromolar to nanomolar IC50 values. The selection of resistant mutants resulted in amino acid substitutions in the viral capsid protein, implying these compounds may play a role in inhibiting the interaction of 2C and the capsid protein. The assembly and encapsidation stages of the viral life cycle still need to be fully understood, and the inhibitors reported here could be useful probes in understanding these processes.


Subject(s)
Enterovirus Infections , Enterovirus , Neuromuscular Diseases , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Capsid Proteins/metabolism , Enterovirus Infections/drug therapy
13.
mSphere ; 8(1): e0056822, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36719225

ABSTRACT

Having varied approaches to the design and manufacture of vaccines is critical in being able to respond to worldwide needs and newly emerging pathogens. Virus-like particles (VLPs) form the basis of two of the most successful licensed vaccines (against hepatitis B virus [HBV] and human papillomavirus). They are produced by recombinant expression of viral structural proteins, which assemble into immunogenic nanoparticles. VLPs can be modified to present unrelated antigens, and here we describe a universal "bolt-on" platform (termed VelcroVax) where the capturing VLP and the target antigen are produced separately. We utilize a modified HBV core (HBcAg) VLP with surface expression of a high-affinity binding sequence (Affimer) directed against a SUMO tag and use this to capture SUMO-tagged gp1 glycoprotein from the arenavirus Junín virus (JUNV). Using this model system, we have solved the first high-resolution structures of VelcroVax VLPs and shown that the VelcroVax-JUNV gp1 complex induces superior humoral immune responses compared to the noncomplexed viral protein. We propose that this system could be modified to present a range of antigens and therefore form the foundation of future rapid-response vaccination strategies. IMPORTANCE The hepatitis B core protein (HBc) forms noninfectious virus-like particles, which can be modified to present a capturing molecule, allowing suitably tagged antigens to be bound on their surface. This system can be adapted and provides the foundation for a universal "bolt-on" vaccine platform (termed VelcroVax) that can be easily and rapidly modified to generate nanoparticle vaccine candidates.


Subject(s)
Vaccines , Humans , Hepatitis B Core Antigens/genetics , Hepatitis B virus , Glycoproteins , Vaccination
14.
Cancer Res ; 83(2): 264-284, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36409824

ABSTRACT

Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem cell-like features and contribute to disease progression, and we previously described a CD44+CD24-pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we report that CD44+CD24- cells are the most frequent cell type in IBC and are commonly pSTAT3+. Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant cells revealed enrichment of genes associated with lineage identity and inflammation in chemotherapy-resistant derivatives. Integrated pSTAT3 chromatin immunoprecipitation sequencing and RNA sequencing (RNA-seq) analyses showed pSTAT3 regulates genes related to inflammation and epithelial-to-mesenchymal transition (EMT) in resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift from luminal to basal/mesenchymal cell states through selection for rare preexisting subpopulations or an acquired change. Finally, combination treatment with paclitaxel and JAK2/STAT3 inhibition prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a more effective therapeutic strategy in IBC. SIGNIFICANCE: Chemotherapy resistance in inflammatory breast cancer is driven by the JAK2/STAT3 pathway, in part via cAMP/PKA signaling and a cell state switch, which can be overcome using paclitaxel combined with JAK2 inhibitors.


Subject(s)
Breast Neoplasms , Inflammatory Breast Neoplasms , Humans , Female , Inflammatory Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Signal Transduction , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Stem Cells/metabolism , STAT3 Transcription Factor/metabolism
15.
Cancer Discov ; 12(12): 2774-2799, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36165893

ABSTRACT

The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. SIGNIFICANCE: Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Humans , Focal Adhesion Protein-Tyrosine Kinases , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/radiotherapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/radiotherapy , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor , Pancreatic Neoplasms
16.
J Gen Virol ; 103(8)2022 08.
Article in English | MEDLINE | ID: mdl-35997623

ABSTRACT

Enterovirus A71 (EVA71) infection can result in paralysis and may be fatal. In common with other picornaviruses, empty capsids are produced alongside infectious virions during the viral lifecycle. These empty capsids are antigenically indistinguishable from infectious virus, but at moderate temperatures they are converted to an expanded conformation. In the closely related poliovirus, native and expanded antigenic forms of particle have different long-term protective efficacies when used as vaccines. The native form provides long-lived protective immunity, while expanded capsids fail to generate immunological protection. Whether this is true for EVA71 remains to be determined. Here, we selected an antigenically stable EVA71 virus population using successive rounds of heating and passage and characterized the antigenic conversion of both virions and empty capsids. The mutations identified within the heated passaged virus were dispersed across the capsid, including at key sites associated with particle expansion. The data presented here indicate that the mutant sequence may be a useful resource to address the importance of antigenic conformation in EVA71 vaccines.


Subject(s)
Enterovirus Infections , Enterovirus , Antigens, Viral/genetics , Capsid , Capsid Proteins/genetics , Humans
17.
mSphere ; 7(3): e0008822, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35642505

ABSTRACT

Enterovirus A71 (EVA71) is a medically important virus that is commonly associated with hand, foot, and mouth disease (HFMD). It is responsible for periodic outbreaks, resulting in significant economic impact and loss of life. Vaccination offers the potential to control future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are few tools to characterize the different antigenic forms of the virus. As with other picornaviruses, EVA71 virions exist in two antigenic states, native (NAg) and expanded (HAg). It is likely that the composition of vaccines, in terms of the proportions of NAg and HAg, will be important for vaccine efficacy and batch-to-batch consistency. This paper describes the development of a single-chain fused variable (scFv) domain fragment and the optimization of a sandwich enzyme-linked immunosorbent assay (ELISA) for the specific detection of the NAg conformation of EVA71. NAg specificity of the scFv was demonstrated using purified EVA71, and conversion of NAg to HAg by heating resulted in a loss of binding. We have thus developed an effective tool for characterization of the specific antigenic state of EVA71. IMPORTANCE EVA71 is a medically important virus that is commonly associated with HFMD, resulting in periodic outbreaks, significant economic impact, and loss of life. Vaccination offers the potential to curtail future outbreaks, and vaccine development has been increasingly the focus of global research efforts. However, antigenic characterization of vaccine candidates is challenging because there are very limited effective tools to characterize the different antigenic forms of EV71. As with other picornaviruses, EVA71 virions exist in two antigenic states, native and expanded. This paper describes the development of an scFv and the optimization of a sandwich ELISA for the specific detection of the native conformation of EVA71 as an effective tool for characterization of the specific antigenic state of EVA71.


Subject(s)
Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Enzyme-Linked Immunosorbent Assay , Hand, Foot and Mouth Disease/prevention & control , Humans , Vaccination
18.
Blood ; 139(5): 779-791, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34115842

ABSTRACT

Severe congenital neutropenia is an inborn disorder of granulopoiesis. Approximately one third of cases do not have a known genetic cause. Exome sequencing of 104 persons with congenital neutropenia identified heterozygous missense variants of CLPB (caseinolytic peptidase B) in 5 severe congenital neutropenia cases, with 5 more cases identified through additional sequencing efforts or clinical sequencing. CLPB encodes an adenosine triphosphatase that is implicated in protein folding and mitochondrial function. Prior studies showed that biallelic mutations of CLPB are associated with a syndrome of 3-methylglutaconic aciduria, cataracts, neurologic disease, and variable neutropenia. However, 3-methylglutaconic aciduria was not observed and, other than neutropenia, these clinical features were uncommon in our series. Moreover, the CLPB variants are distinct, consisting of heterozygous variants that cluster near the adenosine triphosphate-binding pocket. Both genetic loss of CLPB and expression of CLPB variants result in impaired granulocytic differentiation of human hematopoietic progenitor cells and increased apoptosis. These CLPB variants associate with wild-type CLPB and inhibit its adenosine triphosphatase and disaggregase activity in a dominant-negative fashion. Finally, expression of CLPB variants is associated with impaired mitochondrial function but does not render cells more sensitive to endoplasmic reticulum stress. Together, these data show that heterozygous CLPB variants are a new and relatively common cause of congenital neutropenia and should be considered in the evaluation of patients with congenital neutropenia.


Subject(s)
Congenital Bone Marrow Failure Syndromes/genetics , Endopeptidase Clp/genetics , Neutropenia/congenital , Cells, Cultured , Endopeptidase Clp/chemistry , Exome , Female , Genetic Variation , Heterozygote , Humans , Infant , Male , Models, Molecular , Mutation , Neutropenia/genetics
19.
JCI Insight ; 6(11)2021 06 08.
Article in English | MEDLINE | ID: mdl-33886505

ABSTRACT

Despite the availability of multiple human epidermal growth factor receptor 2-targeted (HER2-targeted) treatments, therapeutic resistance in HER2+ breast cancer remains a clinical challenge. Intratumor heterogeneity for HER2 and resistance-conferring mutations in the PIK3CA gene (encoding PI3K catalytic subunit α) have been investigated in response and resistance to HER2-targeting agents, while the role of divergent cellular phenotypes and tumor epithelial-stromal cell interactions is less well understood. Here, we assessed the effect of intratumor cellular genetic heterogeneity for ERBB2 (encoding HER2) copy number and PIK3CA mutation on different types of neoadjuvant HER2-targeting therapies and clinical outcome in HER2+ breast cancer. We found that the frequency of cells lacking HER2 was a better predictor of response to HER2-targeted treatment than intratumor heterogeneity. We also compared the efficacy of different therapies in the same tumor using patient-derived xenograft models of heterogeneous HER2+ breast cancer and single-cell approaches. Stromal determinants were better predictors of response than tumor epithelial cells, and we identified alveolar epithelial and fibroblastic reticular cells as well as lymphatic vessel endothelial hyaluronan receptor 1-positive (Lyve1+) macrophages as putative drivers of therapeutic resistance. Our results demonstrate that both preexisting and acquired resistance to HER2-targeting agents involve multiple mechanisms including the tumor microenvironment. Furthermore, our data suggest that intratumor heterogeneity for HER2 should be incorporated into treatment design.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/genetics , Drug Resistance, Neoplasm/genetics , Epithelial Cells/metabolism , Macrophages/metabolism , Receptor, ErbB-2/genetics , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , DNA Copy Number Variations , Female , Fibroblasts/metabolism , Humans , Middle Aged , Mutation , Neoplasm Transplantation , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Trastuzumab/therapeutic use , Tumor Microenvironment , Vesicular Transport Proteins/metabolism
20.
Nat Cell Biol ; 21(7): 879-888, 2019 07.
Article in English | MEDLINE | ID: mdl-31263265

ABSTRACT

Most human tumours are heterogeneous, composed of cellular clones with different properties present at variable frequencies. Highly heterogeneous tumours have poor clinical outcomes, yet the underlying mechanism remains poorly understood. Here, we show that minor subclones of breast cancer cells expressing IL11 and FIGF (VEGFD) cooperate to promote metastatic progression and generate polyclonal metastases composed of driver and neutral subclones. Expression profiling of the epithelial and stromal compartments of monoclonal and polyclonal primary and metastatic lesions revealed that this cooperation is indirect, mediated through the local and systemic microenvironments. We identified neutrophils as a leukocyte population stimulated by the IL11-expressing minor subclone and showed that the depletion of neutrophils prevents metastatic outgrowth. Single-cell RNA-seq of CD45+ cell populations from primary tumours, blood and lungs demonstrated that IL11 acts on bone-marrow-derived mesenchymal stromal cells, which induce pro-tumorigenic and pro-metastatic neutrophils. Our results indicate key roles for non-cell-autonomous drivers and minor subclones in metastasis.


Subject(s)
Breast Neoplasms/pathology , Lung Neoplasms/pathology , Neoplasm Metastasis/pathology , Neutrophils/metabolism , Tumor Microenvironment , Animals , Carcinogenesis/metabolism , Disease Progression , Humans , Lung/pathology , Lung Neoplasms/secondary , Mesenchymal Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...