Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(20): 4289-4309.e23, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37683635

ABSTRACT

Here, we reveal an unanticipated role of the blood-brain barrier (BBB) in regulating complex social behavior in ants. Using scRNA-seq, we find localization in the BBB of a key hormone-degrading enzyme called juvenile hormone esterase (Jhe), and we show that this localization governs the level of juvenile hormone (JH3) entering the brain. Manipulation of the Jhe level reprograms the brain transcriptome between ant castes. Although ant Jhe is retained and functions intracellularly within the BBB, we show that Drosophila Jhe is naturally extracellular. Heterologous expression of ant Jhe into the Drosophila BBB alters behavior in fly to mimic what is seen in ants. Most strikingly, manipulation of Jhe levels in ants reprograms complex behavior between worker castes. Our study thus uncovers a remarkable, potentially conserved role of the BBB serving as a molecular gatekeeper for a neurohormonal pathway that regulates social behavior.


Subject(s)
Ants , Animals , Ants/physiology , Blood-Brain Barrier , Brain/metabolism , Drosophila , Social Behavior , Behavior, Animal
2.
Nat Ecol Evol ; 7(4): 557-569, 2023 04.
Article in English | MEDLINE | ID: mdl-36941345

ABSTRACT

Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.


Subject(s)
Social Behavior , Sweat , Bees , Animals , Reproduction , Phenotype
3.
J Chem Ecol ; 47(4-5): 420-432, 2021 May.
Article in English | MEDLINE | ID: mdl-33682070

ABSTRACT

Queen pheromones evolved independently in multiple eusocial insect lineages, in which they mediate reproductive conflict by inhibiting worker ovarian development. Although fundamentally important for reproductive division of labor - the hallmark of eusociality - their evolutionary origins are enigmatic. Here, we analyze cuticular and Dufour's gland chemistries across alternative social and reproductive phenotypes in Megalopta genalis bees (tribe Augochlorini, family Halictidae) that facultatively express simple eusociality. Reproductive bees have distinct overall glandular and cuticular chemical phenotypes compared with non-reproductive workers. On the cuticle, a likely site of signal transmission, reproductives are enriched for certain alkenes, most linear alkanes, and are heavily enriched for all methyl-branched alkanes. Chemicals belonging to these compound classes are known to function as fertility signals in other eusocial insect taxa. Some macrocyclic lactones, compounds that serve as queen pheromones in the other eusocial halictid tribe (Halictini), are also enriched among reproductives relative to workers. The intra-population facultative eusociality of M. genalis permits direct comparisons between individuals expressing alternative reproductive phenotypes - females that reproduce alone (solitary reproductives) and social queens - to highlight traits in the latter that may be important mediators of eusociality. Compared with solitary reproductives, the cuticular chemistries of queens are more strongly differentiated from those of workers, and furthermore are especially enriched for methyl-branched alkanes. Determining the pheromonal function(s) and information content of the candidate signaling compounds we identify will help illuminate the early evolutionary history of queen pheromones, chemical signals central to the organization of insect eusocial behavior.


Subject(s)
Complex Mixtures/chemistry , Pheromones/chemistry , Pheromones/metabolism , Alkanes/chemistry , Alkanes/metabolism , Alkenes/chemistry , Alkenes/metabolism , Animal Communication , Animals , Bees , Behavior, Animal , Biological Evolution , Female , Fertility , Gas Chromatography-Mass Spectrometry , Male , Reproduction
4.
Proc Natl Acad Sci U S A ; 117(24): 13615-13625, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32471944

ABSTRACT

Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.


Subject(s)
Bees/growth & development , Bees/physiology , Animals , Bees/genetics , Behavior, Animal , Biological Evolution , Evolution, Molecular , Female , Genome, Insect , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Metamorphosis, Biological , Social Behavior
5.
J Org Chem ; 84(12): 8019-8026, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31136179

ABSTRACT

A new strategy for the synthesis of 23-, 25-, 27-, and 29-membered ( Z)-selective unsaturated and saturated macrocyclic lactones from commercially available 16- and 17-membered macrocyclic lactones and bromoalcohols by Wittig reaction, Yamaguchi macrolactonization, and photoinduced decarboxylative radical macrolactonization is described. The position of the unsaturated part in the macrocyclic lactones can be controlled by changing the number of carbons in the starting materials. This protocol can provide facile access to the desired large-ring ( Z)-selective unsaturated and saturated macrocyclic lactones from simple starting materials.

6.
Biol Lett ; 15(4): 20180740, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30940017

ABSTRACT

A classic prediction of kin selection theory is that a mixed population of social and solitary nests of haplodiploid insects should exhibit a split sex ratio among offspring: female biased in social nests, male biased in solitary nests. Here, we provide the first evidence of a solitary-social split sex ratio, using the sweat bee Megalopta genalis (Halictidae). Data from 2502 offspring collected from naturally occurring nests across 6 years spanning the range of the M. genalis reproductive season show that despite significant yearly and seasonal variation, the offspring sex ratio of social nests is consistently more female biased than in solitary nests. This suggests that split sex ratios may facilitate the evolutionary origins of cooperation based on reproductive altruism via kin selection.


Subject(s)
Sex Ratio , Social Behavior , Altruism , Animals , Bees , Biological Evolution , Female , Male , Reproduction
7.
J Chem Ecol ; 44(9): 827-837, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30014321

ABSTRACT

Chemical communication is crucial for the maintenance of colony organization in eusocial insects and chemical signals are known to mediate important aspects of their social life, including the regulation of reproduction. Sociality is therefore hypothesized to be accompanied by an increase in the complexity of chemical communication. However, little is known about the evolution of odor signals at the transition from solitary living to eusociality. Halictid bees are especially suitable models to study this question as they exhibit considerable variability in social behavior. Here we investigated whether the dissimilarities in cuticle chemical signals in females of different castes and life stages reflect the level of social complexity across halictid bee species. Our hypothesis was that species with a higher social behavior ergo obligate eusocial species possess a more distinct chemical profile between castes or female life stages. We analyzed cuticular chemical profiles of foundresses, breeding females and workers of ancestrally solitary species, facultative and obligate eusocial halictid species. We also tested whether social complexity was associated with a higher investment in chemical signals. Our results revealed higher chemical dissimilarity between castes in obligate than in facultative eusocial species, especially regarding macrocyclic lactones, which were the single common compound class overproduced in queens compared with workers. Chemical dissimilarities were independent of differences in ovarian status in obligate eusocial species but were dependent on ovarian status in facultative eusocial species, which we discuss in an evolutionary framework.


Subject(s)
Bees/chemistry , Behavior, Animal/physiology , Biological Evolution , Hierarchy, Social , Odorants/analysis , Animal Communication , Animals , Bees/metabolism , Chromatography, Gas , Female , Life Cycle Stages , Reproduction
8.
Proc Biol Sci ; 284(1846)2017 01 11.
Article in English | MEDLINE | ID: mdl-28053060

ABSTRACT

Developmental plasticity may accelerate the evolution of phenotypic novelty through genetic accommodation, but studies of genetic accommodation often lack knowledge of the ancestral state to place selected traits in an evolutionary context. A promising approach for assessing genetic accommodation involves using a comparative framework to ask whether ancestral plasticity is related to the evolution of a particular trait. Bees are an excellent group for such comparisons because caste-based societies (eusociality) have evolved multiple times independently and extant species exhibit different modes of eusociality. We measured brain and abdominal gene expression in a facultatively eusocial bee, Megalopta genalis, and assessed whether plasticity in this species is functionally linked to eusocial traits in other bee lineages. Caste-biased abdominal genes in M. genalis overlapped significantly with caste-biased genes in obligately eusocial bees. Moreover, caste-biased genes in M. genalis overlapped significantly with genes shown to be rapidly evolving in multiple studies of 10 bee species, particularly for genes in the glycolysis pathway and other genes involved in metabolism. These results provide support for the idea that eusociality can evolve via genetic accommodation, with plasticity in facultatively eusocial species like M. genalis providing a substrate for selection during the evolution of caste in obligately eusocial lineages.


Subject(s)
Bees/genetics , Behavior, Animal , Biological Evolution , Gene Expression , Social Behavior , Animals , Genes, Insect , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...