Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 20(1): 326-336, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32897077

ABSTRACT

Proteins are critical in catalyzing chemical reactions, forming key cellular structures, and in regulating cellular processes. Investigation of marine microbial proteins by metaproteomics methods enables the discovery of numerous aspects of microbial biogeochemical processes. However, these datasets present big data challenges as they often involve many samples collected across broad geospatial and temporal scales, resulting in thousands of protein identifications, abundances, and corresponding annotation information. The Ocean Protein Portal (OPP) was created to enable data sharing and discovery among multiple scientific domains and serve both research and education functions. The portal focuses on three use case questions: "Where is my protein of interest?", "Who makes it?", and "How much is there?" and provides profile and section visualizations, real-time taxonomic analysis, and links to metadata, sequence analysis, and other external resources to enable connections to be made between biogeochemical and proteomics datasets.


Subject(s)
Information Dissemination , Proteomics , Oceans and Seas
2.
J Proteome Res ; 19(11): 4718-4729, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32897080

ABSTRACT

We present METATRYP version 2 software that identifies shared peptides across the predicted proteomes of organisms within environmental metaproteomics studies to enable accurate taxonomic attribution of peptides during protein inference. Improvements include ingestion of complex sequence assembly data categories (metagenomic and metatranscriptomic assemblies, single cell amplified genomes, and metagenome assembled genomes), prediction of the least common ancestor (LCA) for a peptide shared across multiple organisms, increased performance through updates to the backend architecture, and development of a web portal (https://metatryp.whoi.edu). Major expansion of the marine METATRYP database with predicted proteomes from environmental sequencing confirms a low occurrence of shared tryptic peptides among disparate marine microorganisms, implying tractability for targeted metaproteomics. METATRYP was designed to facilitate ocean metaproteomics and has been integrated into the Ocean Protein Portal (https://oceanproteinportal.org); however, it can be readily applied to other domains. We describe the rapid deployment of a coronavirus-specific web portal (https://metatryp-coronavirus.whoi.edu/) to aid in use of proteomics on coronavirus research during the ongoing pandemic. A coronavirus-focused METATRYP database identified potential SARS-CoV-2 peptide biomarkers and indicated very few shared tryptic peptides between SARS-CoV-2 and other disparate taxa analyzed, sharing <1% peptides with taxa outside of the betacoronavirus group, establishing that taxonomic specificity is achievable using tryptic peptide-based proteomic diagnostic approaches.


Subject(s)
Aquatic Organisms/genetics , Coronavirus/genetics , Metagenomics/methods , Proteome , Software , Bacterial Proteins/classification , Bacterial Proteins/genetics , Betacoronavirus/genetics , COVID-19 , Cluster Analysis , Coronavirus Infections/virology , Humans , Molecular Sequence Annotation , Pandemics , Peptides/classification , Peptides/genetics , Pneumonia, Viral/virology , Proteome/classification , Proteome/genetics , SARS-CoV-2 , Sequence Analysis, Protein , Transcriptome/genetics , Viral Proteins/classification , Viral Proteins/genetics
3.
J Proteome Res ; 18(4): 1461-1476, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30702898

ABSTRACT

Ocean metaproteomics is an emerging field enabling discoveries about marine microbial communities and their impact on global biogeochemical processes. Recent ocean metaproteomic studies have provided insight into microbial nutrient transport, colimitation of carbon fixation, the metabolism of microbial biofilms, and dynamics of carbon flux in marine ecosystems. Future methodological developments could provide new capabilities such as characterizing long-term ecosystem changes, biogeochemical reaction rates, and in situ stoichiometries. Yet challenges remain for ocean metaproteomics due to the great biological diversity that produces highly complex mass spectra, as well as the difficulty in obtaining and working with environmental samples. This review summarizes the progress and challenges facing ocean metaproteomic scientists and proposes best practices for data sharing of ocean metaproteomic data sets, including the data types and metadata needed to enable intercomparisons of protein distributions and annotations that could foster global ocean metaproteomic capabilities.


Subject(s)
Information Dissemination/methods , Oceans and Seas , Proteomics , Water Microbiology , Databases, Protein , Humans , Metagenomics
SELECTION OF CITATIONS
SEARCH DETAIL
...