Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 27(3): 278-285, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29353354

ABSTRACT

Copper algaecide exposures in situ are often of shorter duration than exposures for static toxicity experiments because aqueous concentrations in situ dissipate as a function of site-specific fate processes. Consequently, responses of organisms to static copper exposures may overestimate effects following in situ exposures. To understand the role of exposure duration for altering responses, Pimephales promelas survival was compared following static (96 h) and pulse (1.5, 4, 8, and 15 h half-lives) exposures of CuSO4•5H2O. Copper concentrations sorbed by fry indicated a consequence of different exposures. Responses of P. promelas to static exposures resulted in 96 h LC50s of 166 µgCu/L (95% confidence interval [CI], 142-189 µgCu/L) as soluble copper and 162 µgCu/L (CI, 140-183 µgCu/L) as acid soluble copper. Relative to static 96 h LC50s, exposures with half-lives of 1.5, 4 and 8 h resulted in LC50s 10, 3 and 2 times greater, respectively, for responses measured 96 h after exposure initiation. Copper concentrations extracted from fry exposed for 1.5, 4 and 8 h half-lives were less than the static experiment. However, copper sorbed by fry in the 15 h half-life experiment was not different than the static experiment. The relationship between 96 h LC50 and 1/half-life was expressed using the equations y = 116 + 1360 × (R2 = 0.97) for soluble copper and y = 147 + 1620 × (R2 = 0.98) for acid soluble copper. Incorporation of exposure duration for predictions of P. promelas responses to copper pulse exposures increases prediction accuracy by an order of magnitude.


Subject(s)
Copper Sulfate/toxicity , Cyprinidae/physiology , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Half-Life , Lethal Dose 50
2.
Ecotoxicol Environ Saf ; 145: 591-596, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28802140

ABSTRACT

Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 106 through 107 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms.


Subject(s)
Amino Alcohols/toxicity , Copper/toxicity , Herbicides/toxicity , Microcystins/analysis , Microcystis/drug effects , Organometallic Compounds/toxicity , Chlorophyll/analysis , Chlorophyll A , Colony Count, Microbial , Dose-Response Relationship, Drug , Marine Toxins , Microcystis/metabolism
3.
Chemosphere ; 174: 538-544, 2017 May.
Article in English | MEDLINE | ID: mdl-28193586

ABSTRACT

Copper exposures from algaecide applications in aquatic systems are hypothesized to impede bacterial degradation of microcystin (MC), a cyanobacterial produced hepatotoxin. Despite regulatory implications of this hypothesis, limited data exist on influences of copper-exposures on MC-degrading bacteria and consequent MC-degradation. In this study, influences of copper-algaecide concentrations and formulations on bacterial composition and microcystin-LR (MCLR) degradation were investigated. Microcystis aeruginosa was exposed to four concentrations (0-5.0 mg Cu L-1) of three copper-algaecide formulations, and rates and extents of MCLR degradation were measured. In untreated controls and following exposures of 0.1, 0.5, and 1.0 mg Cu L-1, MCLR concentrations decreased at a rate of ∼41-53 µg MCLR/L d-1. Following exposure to 5.0 mg Cu L-1 MCLR degradation rates decreased an order of magnitude to ∼3-7 µg MCLR/L d-1. Bacterial diversity decreased following copper-exposures greater than 0.1 mg Cu L-1 for all formulations. Relative abundance of certain groups of MC-degrading bacteria identified in treatments increased with increasing copper concentration, suggesting they may be less sensitive to copper exposures than other, MCLR and non MC-degrading heterotrophic bacteria present in the assemblage. Results from this study revealed that copper concentration can influence degradation rates of MCLR, however this influence was not significant within copper concentrations currently registered for use (≤1.0 mg Cu L-1) of the tested algaecides. Copper formulation did not significantly alter degradation rates or bacterial composition. These data augment our understanding of the influences of copper algaecide-exposures on MCLR degradation, and can be used to inform more accurate risk evaluations and use of copper-algaecides for management of MCLR-producing cyanobacteria.


Subject(s)
Copper Sulfate/toxicity , Copper/toxicity , Herbicides/toxicity , Microcystins/metabolism , Microcystis/drug effects , Biodegradation, Environmental/drug effects , Marine Toxins , Microcystis/metabolism
4.
Chemosphere ; 173: 340-350, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28126568

ABSTRACT

Mining leases in the Athabasca Oil Sands (AOS) region produce large volumes of oil sands process-affected water (OSPW) containing constituents that limit beneficial uses and discharge into receiving systems. The aim of this research is to identify constituents of concern (COCs) in OSPW sourced from an active settling basin with the goal of providing a sound rational for developing mitigation strategies for using constructed treatment wetlands for COCs contained in OSPW. COCs were identified through several lines of evidence: 1) chemical and physical characterization of OSPW and comparisons with numeric water quality guidelines and toxicity endpoints, 2) measuring toxicity of OSPW using a taxonomic range of sentinel organisms (i.e. fish, aquatic invertebrates, and a macrophyte), 3) conducting process-based manipulations (PBMs) of OSPW to alter toxicity and inform treatment processes, and 4) discerning potential treatment pathways to mitigate ecological risks of OSPW based on identification of COCs, toxicological analyses, and PBM results. COCs identified in OSPW included organics (naphthenic acids [NAs], oil and grease [O/G]), metals/metalloids, and suspended solids. In terms of species sensitivities to undiluted OSPW, fish ≥ aquatic invertebrates > macrophytes. Bench-scale manipulations of the organic fractions of OSPW via PBMs (i.e. H2O2+UV254 and granular activated charcoal treatments) eliminated toxicity to Ceriodaphnia dubia (7-8 d), in terms of mortality and reproduction. Results from this study provide critical information to inform mitigation strategies using passive or semi-passive treatment processes (e.g., constructed treatment wetlands) to mitigate ecological risks of OSPW to aquatic organisms.


Subject(s)
Cladocera/drug effects , Oil and Gas Fields/chemistry , Toxicity Tests/methods , Water Pollutants, Chemical/analysis , Wetlands , Animals , Carboxylic Acids/analysis , Charcoal/analysis , Hydrocarbons/chemistry , Hydrogen Peroxide/analysis , Metals, Heavy/analysis , Mining
5.
Ecotoxicol Environ Saf ; 134P1: 86-94, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27591804

ABSTRACT

Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (p<0.0001; α=0.05) among NA treatments (10, 20, 40, 60, and 80mg NA/L) and an untreated control (no NAs). Extent of AVS production was sufficient in all NA treatments to achieve ∑SEM:AVS <1, indicating that conditions were conducive for treatment of metals, with sulfide ligands in excess of SEM (Cu, Ni, and Zn). In addition, no adverse effects to SRB (in terms of density, relative abundance, and diversity) were measured following exposures of a commercial NA. In this bench-scale study, dissimilatory sulfate reduction and subsequent metal precipitation were not vulnerable to NAs, indicating passive treatment systems utilizing sulfide production (AVS) could be used to treat metals occurring in NAs affected waters.

6.
Chemosphere ; 161: 491-500, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27459161

ABSTRACT

Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios.


Subject(s)
Bacteria, Aerobic , Carboxylic Acids/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Aerobiosis , Ammonia/chemistry , Ammonia/metabolism , Bacteria, Aerobic/classification , Bacteria, Aerobic/metabolism , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Models, Theoretical , Oil and Gas Fields , Oxygen/chemistry , Oxygen/metabolism , Phosphates/chemistry , Phosphates/metabolism , Temperature
7.
Ecotoxicol Environ Saf ; 132: 202-11, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27322608

ABSTRACT

Sodium carbonate peroxyhydrate (SCP) is a granular algaecide containing H2O2 as an active ingredient to control growth of noxious algae. Measurements of sensitivities of target and non-target species to hydrogen peroxide are necessary for water resource managers to make informed decisions and minimize risks for non-target species when treating noxious algae. The objective of this study was to measure and compare responses among a target noxious alga (cyanobacterium Microcystis aeruginosa) and non-target organisms including a eukaryotic alga (chlorophyte Pseudokirchneriella subcapitata), microcrustacean (Ceriodaphnia dubia), benthic amphipod (Hyalella azteca), and fathead minnow (Pimephales promelas) to exposures of hydrogen peroxide as SCP. Hydrogen peroxide exposures were confirmed using the I3(-) method. SCP margins of safety for these organisms were compared with published toxicity data to provide context for other commonly used algaecides and herbicides (e.g. copper formulations, endothall, and diquat dibromide). Algal responses (cell density and chlorophyll a concentrations) and animal mortality were measured after 96h aqueous exposures to SCP in laboratory-formulated water to estimate EC50 and LC50 values, as well as potency slopes. Despite a shorter test duration, M. aeruginosa was more sensitive to hydrogen peroxide as SCP (96h EC50:0.9-1.0mgL(-)(1) H2O2) than the eukaryotic alga P. subcapitata (7-d EC50:5.2-9.2mgL(-1) H2O2), indicating potential for selective control of prokaryotic algae. For the three non-target animals evaluated, measured 96-h LC50 values ranged from 1.0 to 19.7mgL(-1) H2O2. C. dubia was the most sensitive species, and the least sensitive species was P. promelas, which is not likely to be affected by concentrations of hydrogen peroxide as SCP that would be used to control noxious algae (e.g. M. aeruginosa). Based on information from peer-reviewed literature, other algaecides could be similarly selective for cyanobacteria. Of the algaecides compared, SCP can selectively mitigate risks associated with noxious cyanobacterial growths (e.g. M. aeruginosa), with an enhanced margin of safety for non-target species (e.g. P. promelas).


Subject(s)
Carbonates/toxicity , Herbicides/toxicity , Hydrogen Peroxide/toxicity , Amphipoda/drug effects , Animals , Aquatic Organisms/drug effects , Chlorophyll/metabolism , Chlorophyll A , Chlorophyta/drug effects , Chlorophyta/growth & development , Chlorophyta/metabolism , Cyprinidae , Fresh Water , Lethal Dose 50 , Microcystis/drug effects
8.
Chemosphere ; 153: 170-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27016812

ABSTRACT

Comparative toxicity studies using unconfounded exposures can prioritize the selection of sensitive sentinel test species and refine methods for evaluating ecological risks of complex mixtures like naphthenic acids (NAs), a group of organic acids associated with crude oils and energy-derived waters that have been a source of aquatic toxicity. The objectives of this study were to compare responses of freshwater aquatic organisms (vertebrate, invertebrates, and a macrophyte; in terms of acute toxicity) to Fluka commercial NAs and to compare measured toxicity data with peer-reviewed toxicity data for other commercial NA sources and energy-derived NA sources. Exposures were confirmed using high performance liquid chromatography. Responses (7-d LC50s/EC50) ranged from 1.9 mg L(-1) for Pimephales promelas to 56.2 mg L(-1) for Typha latifolia. Following P. promelas in order of decreasing sensitivity were Ceriodaphnia dubia (7-d LC50 = 2.8 mg L(-1)), Hyalella azteca (7-d LC50 = 4.1 mg L(-1)), Chironomus dilutus (7-d LC50 = 6.5 mg L(-1)), and T. latifolia (7-d EC50 = 56.2 mg L(-1)), indicating that in terms of sensitivities, fish > invertebrates > plant for Fluka NAs in this study. Factors that affect exposures and measurements of exposures differ among commercial and energy-derived NAs and constrain comparisons. Despite differences in exposures, fish and invertebrates were relatively sensitive to both commercial and energy-derived NA sources (based on laboratory measurements and peer-reviewed data) and could be appropriate sentinel species for risk evaluations.


Subject(s)
Carboxylic Acids/toxicity , Cyprinidae/metabolism , Invertebrates/drug effects , Typhaceae/drug effects , Water Pollutants, Chemical/toxicity , Animals , Lethal Dose 50
9.
Ecotoxicol Environ Saf ; 116: 90-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25770656

ABSTRACT

To make informed decisions regarding management of noxious algal growths, water resource managers require information on responses of target and non-target species to algaecide exposures. Periodic treatments of Phycomycin®-SCP (sodium carbonate peroxyhydrate) followed by Algimycin®-PWF (gluconate and citrate chelated copper) to control Lyngbya wollei growths for ten years provided an opportunity for a risk evaluation of treated coves in Lay Lake, AL. Abiotic sediment characteristics (acid soluble copper concentrations, acid volatile sulfides, percent organic matter and cation exchange capacity) and survival of Hyalella azteca and Chironomus dilutus were measured in sediment samples from treated and untreated coves to assess the bioavailability of potential copper-residuals. In laboratory studies to seek a more effective approach for managing the growth of Lyngbya, six algaecide treatments consisting of combinations of copper-based algaecides (Cutrine®-Ultra, Clearigate® and Algimycin®- PWF), a hydrogen peroxide based algaecide (Phycomycin®-SCP) and an adjuvant (Cide-Kick II) were assessed for efficacy in controlling L. wollei sampled from Lay Lake. The most efficient algaecide treatment was determined based on post-treatment algal wet weight and visual observations of responses to exposures. To estimate the margin of safety for non-target organisms, Pimephales promelas was exposed to the most efficacious treatment and a treatment of Phycomycin®-SCP followed by Algimycin®-PWF. Results from sediment experiments demonstrated that there were no measureable copper residuals and no adverse effects on H. azteca and C. dilutus from sediments following ten years of copper-based algaecide treatments. Based on the laboratory results, a treatment of Phycomycin®-SCP at 10.1 mg H2O2/L followed by Cide-Kick II at 0.2 mg/L and Algimycin®- PWF at 0.26 mg Cu/L could control the growth of Lyngbya wollei from Lay Lake, AL and enhance the margin of safety for non-target species (e.g. P. promelas).


Subject(s)
Chironomidae/drug effects , Cyanobacteria/drug effects , Harmful Algal Bloom/drug effects , Herbicides/toxicity , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Copper/analysis , Copper/toxicity , Copper Sulfate/toxicity , Ethanolamines/toxicity , Hydrogen Peroxide/toxicity , Lakes , Organometallic Compounds/toxicity , Sulfides/analysis , Water/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...