Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inflammation ; 45(2): 800-811, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34718927

ABSTRACT

Severe lung inflammation is common in life-threatening coronavirus disease 2019 (COVID-19). This study tested the hypothesis that polymorphonuclear (PMN, neutrophil) phenotype early in the course of disease progression would predict peak lung disease severity in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is increasingly evident that PMN activation contributes to tissue injury resulting from extracellular reactive oxygen species generation, granule exocytosis with release of proteases, neutrophil extracellular trap (NET) formation, and release of cytokines. The current study focuses on PMN activation in response to SARS-CoV-2 infection, specifically, the association between NETs and lung disease. This is a prospective cohort study at an academic medical center with patients enrolled within 4 days of admission at 3 tertiary hospitals: Clements University Hospital, Parkland Memorial Hospital, and Children's Health in Dallas, TX. Patients were categorized as having minimal or moderate to severe lung disease based on peak respiratory support. Healthy donor controls matched for age, sex, race, and ethnicity were also enrolled. Neutrophils from COVID-19 patients displayed greater IL-8 expression, elastase release, and NET formation as compared with neutrophils from healthy donors. Importantly, neutrophils from COVID-19 patients had enhanced NET formation in the absence of any additional stimulus, not seen in PMN from healthy donors. Moreover, PMA-elicited NET formation by circulating PMN correlated with severity of lung disease. We speculate that neutrophil immuno-phenotyping can be used to predict lung disease severity in COVID-19 patients.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Lung , Neutrophils , Prospective Studies , SARS-CoV-2 , Severity of Illness Index
2.
J Immunol ; 204(3): 671-681, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31871022

ABSTRACT

Neutrophils, polymorphonuclear (PMN) leukocytes, play an important role in the early innate immune response to Mycobacterium tuberculosis infection in the lung. Interactions between PMN and mycobacterial lipids impact the activation state of these migrated cells with consequences for the surrounding tissue in terms of resolution versus ongoing inflammation. We hypothesized that lipoarabinomannan from M. tuberculosis (Mtb LAM) would prime human PMN in a TLR2-dependent manner and investigated this with specific comparison with the purified synthetic TLR2 agonists, Pam3CSK4 and FSL-1. In contrast to Pam3CSK4 and FSL-1, we found Mtb LAM did not induce any of the classical PMN priming phenotypes, including enhancement of NADPH oxidase activity, shedding of l-selectin, or mobilization of CD11b. However, exposure of PMN to Mtb LAM did elicit pro- and anti-inflammatory cytokine production and release in a TLR2/1-dependent manner, using the TLR1 single-nucleotide polymorphism rs5743618 (1805G/T) as a marker for TLR2/1 specificity. Moreover, Mtb LAM did not elicit p38 MAPK phosphorylation or endocytosis, although these processes occurred with Pam3CSK4 stimulation, and were necessary for the early priming events to occur. Interestingly, Mtb LAM did not abrogate priming responses elicited by Pam3CSK4 Notably, subfractionation of light membranes from Pam3CSK4 versus Mtb LAM-stimulated cells demonstrated differential patterns of exocytosis. In summary, Mtb LAM activates PMN via TLR2/1, resulting in the production of cytokines but does not elicit early PMN priming responses, as seen with Pam3CSK4 We speculate that the inability of Mtb LAM to prime PMN may be due to differential localization of TLR2/1 signaling.


Subject(s)
Lipopolysaccharides/metabolism , Mycobacterium tuberculosis/physiology , Neutrophils/immunology , Toll-Like Receptor 2/metabolism , Tuberculosis, Pulmonary/immunology , Cells, Cultured , Cytokines/metabolism , Exocytosis , Humans , Immunity, Innate , Lipopeptides/metabolism , NADPH Oxidases/metabolism , Neutrophil Activation , Polymorphism, Single Nucleotide , Toll-Like Receptor 1/genetics , Toll-Like Receptor 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...