Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 109: 54-68, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27865172

ABSTRACT

This study monitored three different activated sludge systems from the Blue Plains Advanced Wastewater Plant for a 1 year period to explore the relationship between effluent quality and activated sludge settling and flocculation behavior. Hindered settling rates (ISV) and sludge volume index (SVI) measurements were collected weekly. Novel metrics based on the solids concentration at which the transition between settling regimens occurred were also collected weekly. The transitional metrics were Threshold of Flocculation (TOF), and Limit of Stokesian Settling (LOSS). They marked the transition from discreet to flocculant settling, and from flocculant to hindered settling, respectively. A pilot clarifier and settling column were run and filmed to determine floc morphological properties. SVI was found to lose sensitivity (r < 0.20) when characterizing ISV above a hindered settling rate of 3 m h-1. ISV and LOSS had a strong correlation (r = 0.71), but ISV was subject to change, depending on the solids concentration. Two sludge matrix limitations influencing effluent quality were characterized by transition concentrations; pinpoint floc formation, and loose floc formation. Pinpoint flocs had TOF values above 400 mg TSS L-1; loose floc formation sludge had TOF and LOSS values below 400 mg TSS L-1 and 900 mg TSS L-1, respectively. TOF was found to correlate with the particle size distribution while LOSS correlated to the settling velocity distribution. The use of both TOF and LOSS is a quick and effective way to characterize limitations effecting effluent quality.


Subject(s)
Sewage , Waste Disposal, Fluid , Flocculation , Particle Size , Wastewater
2.
Water Res ; 90: 100-110, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26724444

ABSTRACT

Flocculent settling (stokesian) is predominant within ideally operating clarifiers, and the shift to 'slower' hindered settling (non-stokesian) causes both failure and poor effluent quality. Therefore, a new metric for settling characteristics was developed and classified as Limit of Stokesian Settling (LOSS). The technique consisted of determining the total suspended solids (TSS) concentration at which mixed liquor settling characteristics transition from stokesian to non-stokesian settling. An image analytical technique was developed with the aid of MATLAB(®) to identify this transition. The MATLAB tool analyzed RGB images from video, and identified the presence of an interface by a dramatic shift in the Red indices. LOSS data for Secondary activated-sludge systems were analyzed for a period of 60 days at the Blue Plains Advanced Wastewater Treatment Plant. LOSS for secondary systems typically occurred between 600 and 700 mg TSS/L but reached 1000 mg TSS/L for a good settling secondary sludge and 500 mg TSS/L for a poor settling secondary sludge, settling quality was based on hindered settling rates. In addition, LOSS was collected for granular systems seeded with cyclone underflow from Strass Wastewater Treatment Plant, it was observed that LOSS was higher for granular systems ranging from 1600 to 5500 mg TSS/L for low and high levels of granulation, respectively. The monovalent to divalent cation ratio (M/D) was increased with the addition of sodium ions to deteriorate settling properties. Samples adjusted with higher M/D consistently had 100 mg TSS/L (15%) decrease in LOSS from the control. LOSS numbers collected experimentally were validated with the Takacs et al. (1991) settling model. When compared to flux curves with small changes in sludge matrix, LOSS was proven to be faster at characterizing hindered settling velocity and was less erratic. This is the first time a measurement method has been developed to characterize the transition from stokesian to non-stokesian settling. Additionally, this is the first step in developing new metrics to predict clarifier failure, and determine effluent quality through the development of flocculent settling metrics.


Subject(s)
Sewage , Waste Disposal, Fluid/methods , Flocculation , Image Processing, Computer-Assisted , Models, Theoretical
4.
Water Res ; 39(10): 2125-35, 2005 May.
Article in English | MEDLINE | ID: mdl-15922396

ABSTRACT

In building and tuning good settling models for secondary clarifiers of wastewater treatment plants, there is a need for measured continuous solids concentration profiles during batch settling. Conventional measuring techniques have difficulties in recording this kind of data, either because they are invasive, or because of the low solids concentration and/or solids density of activated sludge. This paper investigates a novel non-invasive measurement technique borrowed from nuclear medicine, using a solids radiotracer and gamma cameras, to obtain solids concentration profiles during the batch settling of activated sludge, in a pilot-scale column with a height of 1m. The technique does not disturb the settling process, does not alter the settling characteristics, gives profiles every minute and every few millimeters, and is capable of measuring in a range of 0-25 g/l with high accuracy. Dynamic solids concentration profile measurements were performed for sludges of different wastewater treatment plants, and at different initial concentrations. The results show a quantitative representation of the settling process, and reveal hindered and compression settling.


Subject(s)
Isotope Labeling/methods , Sewage/chemistry , Waste Disposal, Fluid/methods , Gamma Cameras , Mathematics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...