Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Assist Reprod Genet ; 37(1): 5-16, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31776756

ABSTRACT

OBJECTIVE: To establish a model of human implantation that responds to hormonal stimuli and can differentiate between endometrium from fertile women and those with idiopathic infertility. DESIGN: A trophoblast stem cell (trophectodermal) line (TSC; derived from human pre-implantation embryo) was used to form trophectodermal spheroids (TS). TS attachment to monolayers of endometrial epithelial cell lines or primary endometrial epithelial cells (pHEECs) was determined. SETTING: Independent Medical Research Institute with close clinical linkages INTERVENTIONS: Spheroid attachment and outgrowth was determined with added hormones (estradiol 17ß (E), E + medroxyprogesterone acetate (MPA) or E + MPA + human chorionic gonadotropin (hCG)). Spheroid attachment to E/MPA treated pHEEC prepared from fertile women or those with idiopathic infertility tested. MAIN OUTCOME MEASURE: Firmly attached spheroids counted after co-culture for 6 h. Outgrowth was determined by quantitation of area covered by spheroid after firm adhesion. RESULTS: Functional adhesion of TS to two endometrial epithelial cell lines, Ishikawa and ECC-1 cells, was hormonally responsive, with adhesion/outgrowth increased by E/MPA (ECC-1; p < 0.01, Ishikawa; p < 0.01) and E/MPA/hCG (ECC-1; p < 0.001, Ishikawa p < 0.01) versus E alone. The same pattern of hormone responsiveness was observed in pHEEC obtained from fertile women (E vs, E/MPA; p < 0.01, E vs. E/MPA/hCG; p < 0.001). TS adhered to 85% of pHEEC obtained from fertile women (11/13) and 11% of pHEEC obtained from women with unexplained infertility (2/18, p < 0.001). CONCLUSION: This new model of "embryo" implantation largely discriminates between endometrial epithelial cells obtained from fertile vs. infertile women based on adhesion; this holds potential as an in vitro "diagnostic" tool of endometrial infertility.


Subject(s)
Cell Adhesion , Embryo, Mammalian/physiology , Endometrium/physiology , Estradiol/pharmacology , Fertility/physiology , Infertility, Female/physiopathology , Trophoblasts/physiology , Coculture Techniques , Embryo Implantation , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Endometrium/cytology , Endometrium/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/physiology , Estrogens/pharmacology , Female , Fertility/drug effects , Humans , Infertility, Female/drug therapy , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Spheroids, Cellular/physiology , Trophoblasts/cytology , Trophoblasts/drug effects
2.
Sci Rep ; 9(1): 15495, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664088

ABSTRACT

The yin and yang of female fertility is a complicated issue; large numbers of women/couples desire fertility and seek assisted reproduction intervention to achieve conception, while others seek to prevent pregnancy. Understanding specific molecules which control endometrial-embryo interactions is essential for both facilitating and preventing pregnancy. SOX17 has recently emerged as an important transcription factor involved in endometrial receptivity and embryo implantation. However, studies to date have examined mouse models of pregnancy which do not necessarily translate to the human. Demonstration of a role for 'implantation factors' in a human system is critical to provide a rationale for in depth clinical investigation and targeting of such factors. We demonstrate that SOX17is present within the receptive human endometrium and is up-regulated within human endometrial epithelial cells by combined estrogen & progesterone, the hormonal milieu during the receptive window. SOX17 localizes to the point of adhesive contact between human endometrial epithelial cells and a human 'embryo mimic' model (trophectodermal spheroid). Targeting SOX17 in endometrial epithelial cells using CRISPR/Cas9 knockdown or a SOX-F family inhibitor, MCC177, significantly inhibited adhesion of an trophectodermal spheroids to the epithelial cells thereby preventing 'implantation'. These data confirm the important role of endometrial SOX17 in human endometrial receptivity and embryo implantation.


Subject(s)
Embryo Implantation/physiology , Endometrium/physiology , SOXF Transcription Factors/physiology , Estrogens/physiology , Female , Gene Knockdown Techniques , Humans , Pregnancy , Progesterone/physiology , SOXF Transcription Factors/genetics
3.
J Colloid Interface Sci ; 476: 94-102, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27209395

ABSTRACT

A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient.


Subject(s)
Dental Enamel/chemistry , Nitric Acid/chemistry , Tooth Erosion/chemically induced , Tooth Erosion/therapy , Animals , Cattle , Microscopy, Atomic Force , Microscopy, Electrochemical, Scanning , Particle Size , Surface Properties
4.
ACS Nano ; 9(7): 7266-76, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26132922

ABSTRACT

Nanopipettes are playing an increasingly prominent role in nanoscience, for sizing, sequencing, delivery, detection, and mapping interfacial properties. Herein, the question of how to best resolve topography and surface charge effects when using a nanopipette as a probe for mapping in scanning ion conductance microscopy (SICM) is addressed. It is shown that, when a bias modulated (BM) SICM scheme is used, it is possible to map the topography faithfully, while also allowing surface charge to be estimated. This is achieved by applying zero net bias between the electrode in the SICM tip and the one in bulk solution for topographical mapping, with just a small harmonic perturbation of the potential to create an AC current for tip positioning. Then, a net bias is applied, whereupon the ion conductance current becomes sensitive to surface charge. Practically this is optimally implemented in a hopping-cyclic voltammetry mode where the probe is approached at zero net bias at a series of pixels across the surface to reach a defined separation, and then a triangular potential waveform is applied and the current response is recorded. Underpinned with theoretical analysis, including finite element modeling of the DC and AC components of the ionic current flowing through the nanopipette tip, the powerful capabilities of this approach are demonstrated with the probing of interfacial acid-base equilibria and high resolution imaging of surface charge heterogeneities, simultaneously with topography, on modified substrates.

5.
J Am Chem Soc ; 136(39): 13735-44, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25181551

ABSTRACT

Nanopipettes are emerging as simple but powerful tools for probing chemistry at the nanoscale. In this contribution the use of nanopipettes for simultaneous surface charge mapping and topographical imaging is demonstrated, using a scanning ion conductance microscopy (SICM) format. When a nanopipette is positioned close to a surface in electrolyte solution, the direct ion current (DC), driven by an applied bias between a quasi-reference counter electrode (QRCE) in the nanopipette and a second QRCE in the bulk solution, is sensitive to surface charge. The charge sensitivity arises because the diffuse double layers at the nanopipette and the surface interact, creating a perm-selective region which becomes increasingly significant at low ionic strengths (10 mM 1:1 aqueous electrolyte herein). This leads to a polarity-dependent ion current and surface-induced rectification as the bias is varied. Using distance-modulated SICM, which induces an alternating ion current component (AC) by periodically modulating the distance between the nanopipette and the surface, the effect of surface charge on the DC and AC is explored and rationalized. The impact of surface charge on the AC phase (with respect to the driving sinusoidal signal) is highlighted in particular; this quantity shows a shift that is highly sensitive to interfacial charge and provides the basis for visualizing charge simultaneously with topography. The studies herein highlight the use of nanopipettes for functional imaging with applications from cell biology to materials characterization where understanding surface charge is of key importance. They also provide a framework for the design of SICM experiments, which may be convoluted by topographical and surface charge effects, especially for small nanopipettes.


Subject(s)
Electrochemical Techniques , Nanotechnology , Electrochemical Techniques/instrumentation , Electrodes , Nanotechnology/instrumentation , Surface Properties
6.
Langmuir ; 29(50): 15565-72, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24224979

ABSTRACT

A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10(-5) cm s(-1) (equivalent surface dissolution flux ca. 0.5 µmol cm(-2) s(-1) into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future.


Subject(s)
Electrodes , Kinetics , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...