Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Parasitol ; 258: 108716, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340779

ABSTRACT

There are more than 240 million cases of malaria and 600,000 associated deaths each year, most due to infection with Plasmodium falciparum parasites. While malaria treatment options exist, new drugs with novel modes of action are needed to address malaria parasite drug resistance. Protein lysine deacetylases (termed HDACs) are important epigenetic regulatory enzymes and prospective therapeutic targets for malaria. Here we report the antiplasmodial activity of a panel of 17 hydroxamate zinc binding group HDAC inhibitors with alkoxyamide linkers and different cap groups. The two most potent compounds (4a and 4b) were found to inhibit asexual P. falciparum growth with 50% inhibition concentrations (IC50's) of 0.07 µM and 0.09 µM, respectively, and demonstrated >200-fold more selectivity for P. falciparum parasites versus human neonatal foreskin fibroblasts (NFF). In situ hyperacetylation studies demonstrated that 4a, 4b and analogs caused P. falciparum histone H4 hyperacetylation, suggesting HDAC inhibition, with structure activity relationships providing information relevant to the design of new Plasmodium-specific aliphatic chain hydroxamate HDAC inhibitors.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Animals , Infant, Newborn , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/therapeutic use , Malaria/drug therapy , Plasmodium falciparum , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Antimalarials/therapeutic use
2.
J Med Chem ; 65(6): 4616-4632, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35286086

ABSTRACT

Anticancer drug conjugates may benefit from simultaneous action at two targets potentially overcoming the drawbacks of current cancer treatment, such as insufficient efficacy, high toxicity, and development of resistance. Compared to a combination of two single-target drugs, they may offer an advantage of pharmacokinetic simplicity and fewer drug-drug interactions. Here, we report a series of compounds connecting tamoxifen or endoxifen with the EGFR-inhibitor gefitinib via a covalent linkage. These hybrid ligands retain both ER antagonist activity and EGFR inhibition. The most potent analogues exhibited single-digit nanomolar activities at both targets. The amide-linked endoxifen-gefitinib drug conjugates 17b and 17c demonstrated the most favorable anti-cancer profile in cellular viability assays on MCF7, MDA-MB-231, MDA-MB-468, and BT-549 breast cancer cells. Most importantly, in TNBC cells 17b and 17c displayed nanomolar IC50-values (380 nM - 970 nM) and were superior in their anti-cancer activity compared to their control compounds and combinations thereof.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Triple Negative Breast Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , ErbB Receptors , Female , Gefitinib/pharmacology , Humans , Ligands , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Triple Negative Breast Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...