Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 11(4): e4381, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-31218145

ABSTRACT

Three-dimensional (3D) printing has become a useful tool within the field of medicine as a way to produce custom anatomical models for teaching, surgical planning, and patient education. This technology is quickly becoming a key component in simulation-based medical education (SBME) to teach hands-on spatial perception and tactile feedback. Within fields such as interventional radiology (IR), this approach to SBME is also thought to be an ideal instructional method, providing an accurate and economical means to study human anatomy and vasculature. Such anatomical details can be extracted from patient-specific and anonymized CT or MRI scans for the purpose of teaching or analyzing patient-specific anatomy. There is evidence that 3D printing in IR can also optimize procedural training, so learners can rehearse procedures under fluoroscopy while receiving immediate supervisory feedback. Such training advancements in IR hold the potential to reduce procedural operating time, thus reducing the amount of time a patient is exposed to radiation and anaesthetia. Using a program evaluation approach, the purpose of this technical report is to describe the development and application of 3D-printed vasculature models within a radiology interest group to determine their efficacy as supplementary learning tools to traditional, lecture-based teaching. The study involved 30 medical students of varying years in their education, involved in the interest group at Memorial University of Newfoundland (MUN). The session was one hour in length and began with a Powerpoint presentation demonstrating the insertion of guide wires and stents using 3D-printed vasculature models. Participants had the opportunity to use the models to attempt several procedures demonstrated during the lecture. These attempts were supervised by an educational expert/facilitator. A survey was completed by all 30 undergraduate medical students and returned to the facilitators, who compiled the quantitative data to evaluate the efficacy of the 3D-printed models as an adjunct to the traditional didactic teaching within IR. The majority of feedback was positive, supporting the use of 3D=printed vasculature as an additional tactile training method for medical students within an IR academic setting. The hands-on experience provides a valuable training approach, with more opportunities for the rehearsal of high-acuity, low-occurrence (HALO) procedures performed in IR.

2.
Curr Probl Diagn Radiol ; 48(4): 368-378, 2019.
Article in English | MEDLINE | ID: mdl-29678454

ABSTRACT

BACKGROUND: Bibliometric analyses by highest number of citations can help researchers and funding agencies in determining the most influential articles in a field. The main objective of this analysis was to identify the top 100 cited articles addressing radiation exposure from medical imaging and assess their characteristics. METHODS: Relevant articles were extracted from the Scopus database after a systematic search by researchers using an iteratively defined Boolean search string. Subsequently, exclusion criteria were applied. A list of top 100 articles was prepared, and articles were ranked according to the citations they had received. No time restriction was applied. Descriptive statistics of the data were compiled. RESULTS: The top-cited articles were published from 1970-2013, with the most articles published in 2009 and 2010 (12 articles in each year). The citations ranged from 107-1888 with a median of 272. Manuscripts from our top-cited list originated from 20 different countries, with contributions made by 158 authors and 160 organizations. Eighty-eight percent of studies evaluated patient-related radiation exposure, 7% health care workers, and 5% both or were not specified. Thirty-two percent of studies examined adult populations, 14% pediatric, and 54% included both populations or did not specify. Seventy-two percent of studies were dedicated to Computed Tomography, 8% to radiography/fluoroscopy, 9% to interventional procedures, 4% to nuclear medicine, and 7% to a combination of 2 or more modalities. CONCLUSION: The top 100 cited articles in medical imaging related to radiation exposure are diverse, originating from many countries with numerous contributing authors. The most common topics covered involve CT and adult patients. The recent peak in the most-highly cited articles (2010) suggests that increased attention has been devoted to this field in recent years. Based on these results, it would appear that research on radiation exposure in medical imaging is poised to continue expanding.


Subject(s)
Bibliometrics , Diagnostic Imaging/adverse effects , Radiation Exposure/adverse effects , Radiation Exposure/statistics & numerical data , Canada , Humans , Internationality , Pakistan , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...