Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Int J Pharm ; 601: 120556, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33798688

ABSTRACT

An endosomal trap is a major barrier in gene therapy. We have designed an endosomolytic peptide based on the leucine zipper sequence and characterized it both structurally and functionally. The results illustrated that leucine zipper endosomolytic peptide (LZEP) exhibited appreciable hemolysis of human red blood cells (hRBCs) at pH 5.0, but negligible hemolysis at pH 7.4. Calcein release experiment indicated that only at pH 5.0 but not at pH 7.4, LZEP was able to permeabilize hRBCs. LZEP revealed significant self-assembly as well as peptide induced α-helical structure at pH 5.0. Unlike at pH 5.0, LZEP failed to self-assemble and showed a random coil structure at pH 7.4. Transfection data depicted that lipoplexes modified with LZEP resulted in significantly higher gene expression as compared to lipoplexes without LZEP. Interestingly, the transfection efficacy of LZEP modified lipid nanoparticles reached the levels of Lipofectamine 2000 (LF 2000), without any cellular toxicity as observed by MTT assay. The results suggest a novel approach for designing endosomolytic peptides by employing the leucine zipper sequence and simultaneously the designed peptides could be utilized for enhancing gene delivery into mammalian cells.


Subject(s)
Leucine Zippers , Peptides , Animals , Gene Expression , Hemolysis , Humans , Transfection
2.
Prostaglandins Other Lipid Mediat ; 152: 106500, 2021 02.
Article in English | MEDLINE | ID: mdl-33038487

ABSTRACT

Prostaglandins are a diverse family of biological active molecules that are synthesized after liberation of arachnidonic or linolenic acid from the plasma membrane by phospholipase A2 (PLA2). Specific prostaglandins may be pro-inflammatory or anti-inflammatory due to a poorly understood biochemical equilibrium. Some of the anti-inflammatory prostaglandins namely, prostaglandin A1 (PGA1) and prostaglandin E1 (PGE1) have a cyclopentenone moiety that can react and modify a protein's activity. These two prostaglandins are electrophilic reactive lipid species and are formed as a result of the reaction cascade initiated by PLA2. It was of interest to study the interaction with these prostaglandins as they could either amplify or block this enzyme's activity. We found that the former is true initially as there is a shorter time to activate the protein on the lipid membrane and an overall increase in hydrolysis was observed when PGA1 and PGE1 prostaglandin was added with PLA2 and liposomes. The interfacial activation model was further explored in which there is a modification of the enzyme rather than a modifcation of the substrate. However, after a time the protein was shown to form amyloid like fibrils thereby blocking further hydrolysis. The fibrillization kinetics in the presence of the one of the prostaglandins was monitored using thioflavin T (ThT) and the resulting fibrils were characterized using transmission electron microscopy (TEM) and atomic force microscopy (AFM). Modification of PLA2 by these prostaglandins leading to amyloid like fibrils gives an additional perspective of control of the interfacial activation mechanism of this enzyme.


Subject(s)
Phospholipases A2 , Prostaglandins , Cell Membrane/metabolism , Hydrolysis , Kinetics
3.
Nanoscale Res Lett ; 12(1): 372, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28549377

ABSTRACT

Liposome nanocarriers (LPNs) are potentially the future of inner ear therapy due to their high drug loading capacity and efficient uptake in the inner ear after a minimally invasive intratympanic administration. However, information on the biocompatibility of LPNs in the inner ear is lacking. The aim of the present study is to document the biocompatibility of LPNs in the inner ear after intratympanic delivery. LPNs with or without gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (Gd-DOTA) were delivered to the rats through transtympanic injection. The distribution of the Gd-DOTA-containing LPNs in the middle and inner ear was tracked in vivo using MRI. The function of the middle and inner ear barriers was evaluated using gadolinium-enhanced MRI. The auditory function was measured using auditory brainstem response (ABR). The potential inflammatory response was investigated by analyzing glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression in the inner ear. The potential apoptosis was analyzed using terminal transferase (TdT) to label the free 3'OH breaks in the DNA strands of apoptotic cells with TMR-dUTP (TUNEL staining). As a result, LPNs entered the inner ear efficiently after transtympanic injection. The transtympanic injection of LPNs with or without Gd-DOTA neither disrupted the function of the middle and inner ear barriers nor caused hearing impairment in rats. The critical inflammatory biological markers in the inner ear, including glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression, were not influenced by the administration of LPNs. There was no significant cell death associated with the administration of LPNs. The transtympanic injection of LPNs is safe for the inner ear, and LPNs may be applied as a drug delivery matrix in the clinical therapy of sensorineural hearing loss.

4.
Methods Mol Biol ; 1427: 363-415, 2016.
Article in English | MEDLINE | ID: mdl-27259938

ABSTRACT

Nanoparticles offer new possibilities for inner ear treatment as they can carry a variety of drugs, protein, and nucleic acids to inner ear. Nanoparticles are equipped with several functions such as targetability, immuno-transparency, biochemical stability, and ability to be visualized in vivo and in vitro. A group of novel peptides can be attached to the surface of nanoparticles that will enhance the cell entry, endosomal escape, and nuclear targeting. Eight different types of nanoparticles with different payload carrying strategies are available now. The transtympanic delivery of nanoparticles indicates that, depending on the type of nanoparticle, different migration pathways into the inner ear can be employed, and that optimal carriers can be designed according to the intended cargo. The use of nanoparticles as drug/gene carriers is especially attractive in conjunction with cochlear implantation or even as an inclusion in the implant as a drug/gene reservoir.


Subject(s)
Labyrinth Diseases/therapy , Nanoparticles/administration & dosage , Animals , Drug Delivery Systems , Genetic Therapy , Humans , Nanoparticles/chemistry
5.
Langmuir ; 32(25): 6524-33, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27260273

ABSTRACT

Oxidized phospholipids occur naturally in conditions of oxidative stress and have been suggested to play an important role in a number of pathological conditions due to their effects on a lipid membrane acyl chain orientation, ordering, and permeability. Here we investigate the effect of the oxidized phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) on a model membrane of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using a combination of (13)C-(1)H dipolar-recoupling nuclear magnetic resonance (NMR) experiments and united-atom molecular dynamics (MD) simulations. The obtained experimental order parameter SCH profiles show that the presence of 30 mol % PazePC in the bilayer significantly increases the gauche content of the POPC acyl chains, therefore decreasing the thickness of the bilayer, although with no stable bilayer pore formation. The MD simulations reproduce the disordering effect and indicate that the orientation of the azelaoyl chain is highly dependent on its protonation state with acyl chain reversal for fully deprotonated states and a parallel orientation along the interfacial plane for fully protonated states, deprotonated and protonated azelaoyl chains having negative and positive SCH profiles, respectively. Only fully or nearly fully protonated azelaoyl chain are observed in the (13)C-(1)H dipolar-recoupling NMR experiments. The experiments show positive SCH values for the azelaoyl segments confirming for the first time that oxidized chains with polar termini adopt a parallel orientation to the bilayer plane as predicted in MD simulations.


Subject(s)
Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Phosphorylcholine/analogs & derivatives , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Phosphorylcholine/chemistry
6.
Biochim Biophys Acta ; 1858(2): 264-73, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26656184

ABSTRACT

In order to obtain molecular level insight into the biophysics of the apoptosis promoting phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) we studied its partitioning into different lipid phases by isothermal titration calorimetry (ITC). To aid the interpretation of these data for PazePC, we additionally characterized by both ITC and fluorescence spectroscopy the fluorescent phospholipid analog 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine (NBD-C6-PC), which similarly to PazePC can adopt extended conformation in lipid bilayers. With the NBD-hexanoyl chain reversing its direction and extending into the aqueous space out of the bilayer, 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) becomes accessible to the water soluble dithionite, which reduces to non-fluorescent product. Our results suggest that these phospholipid derivatives first partition and penetrate into the outer bilayer leaflet of liquid disordered phase liposomes composed of unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Upon increase up to 2 mol% PazePC and NBD-C6-PC of the overall content, flip-flop from the outer into the inner bilayer leaflet commences. Interestingly, the presence of 40 mol% cholesterol in POPC liposomes did not abrogate the partitioning of PazePC into the liquid ordered phase. In contrast, only insignificant partitioning of PazePC and NBD-C6-PC into sphingomyelin/cholesterol liposomes was evident, highlighting a specific membrane permeability barrier function of this particular lipid composition against oxidatively truncated PazePC, thus emphasizing the importance of detailed characterization of the biophysical properties of membranes found in different cellular organelles, in terms of providing barriers for lipid-mediated cellular signals in processes such as apoptosis. Our data suggest NBD-C6-PC to represent useful fluorescent probe to study the cellular dynamics of oxidized phospholipid species, such as PazePC.


Subject(s)
Lipid Bilayers/chemistry , Models, Chemical , Phosphatidylcholines/chemistry
7.
Methods Appl Fluoresc ; 4(3): 034007, 2016 09 02.
Article in English | MEDLINE | ID: mdl-28355153

ABSTRACT

The applicability of a series of novel benzanthrone dyes to monitoring the changes in physicochemical properties of lipid bilayer and to differentiating between the native and aggregated protein states has been evaluated. Based on the quantitative parameters of the dye-membrane and dye-protein binding derived from the fluorimetric titration data, the most prospective membrane probes and amyloid tracers have been selected from the group of examined compounds. Analysis of the red edge excitation shifts of the membrane- and amyloid-bound dyes provided information on the properties of benzanthrone binding sites within the lipid and protein matrixes. To understand how amyloid specificity of benzanthrones correlates with their structure, quantitative structure activity relationship (QSAR) analysis was performed involving a range of quantum chemical molecular descriptors. A statistically significant model was obtained for predicting the sensitivity of novel benzanthrone dyes to amyloid fibrils.


Subject(s)
Benz(a)Anthracenes/chemistry , Amyloid , Binding Sites , Fluorescent Dyes , Lipid Bilayers , Molecular Probes , Prospective Studies , Protein Binding , Quantitative Structure-Activity Relationship , Spectrometry, Fluorescence
8.
Methods Appl Fluoresc ; 4(3): 034008, 2016 09 06.
Article in English | MEDLINE | ID: mdl-28355154

ABSTRACT

The kinetics of lysozyme and insulin amyloid formation in the presence of the oxidized phospholipids (oxPLs) was investigated using Thioflavin T fluorescence assay. The kinetic parameters of fibrillization process (lag time and apparent rate constant) have been determined upon varying the following experimental parameters: the type of lipid assemblies (premicellar aggregates and lipid bilayer vesicles), pH, temperature and lipid-to-protein molar ratio. It was found that oxPLs premicellar aggregates induced the more pronounced increase of the maximum Thioflavin T fluorescence, which is proportional to the extent of fibril formation, compared to the vesicles composed of the oxidized and unoxidized lipids. In contrast, the oxPLs, used as dispersions or included into vesicles, inhibited fibril nucleation and elongation under near-physiological conditions in vitro compared to liposomes containing unoxidized lipids. The results obtained provide deeper insight into the molecular mechanisms of the oxidative stress-modulated conformational diseases, and could be employed for the anti-amyloid drug development.


Subject(s)
Lipids/chemistry , Amyloid , Amyloidogenic Proteins , Fluorescence , Hydrogen-Ion Concentration , Kinetics , Lipid Bilayers , Temperature
9.
Methods Appl Fluoresc ; 4(3): 034010, 2016 09 06.
Article in English | MEDLINE | ID: mdl-28355156

ABSTRACT

Fluorescence represents one of the most powerful tools for the detection and structural characterization of the pathogenic protein aggregates, amyloid fibrils. The traditional approaches to the identification and quantification of amyloid fibrils are based on monitoring the fluorescence changes of the benzothiazole dye thioflavin T (ThT) and absorbance changes of the azo dye Congo red (CR). In routine screening it is usually sufficient to perform only the ThT and CR assays, but both of them, when used separately, could give false results. Moreover, fibrillization kinetics can be measured only by ThT fluorescence, while the characteristic absorption spectra and birefringence of CR represent more rigid criteria for the presence of amyloid fibrils. Therefore, it seemed reasonable to use both these dyes simultaneously, combining the advantages of each technique. To this end, we undertook a detailed analysis of the fluorescence spectral behavior of these unique amyloid tracers upon their binding to amyloid fibrils from lysozyme, insulin and an N-terminal fragment of apolipoprotein A-I with Iowa mutation. The fluorescence measurements revealed several criteria for distinguishing between fibrillar and monomeric protein states: (i) a common drastic increase in ThT fluorescence intensity; (ii) a sharp decrease in ThT fluorescence upon addition of CR; (iii) an appearance of the maximum at 535-540 nm in the CR excitation spectra; (iv) increase in CR fluorescence intensity at 610 nm. Based on these findings we designed a novel combined ThT-CR fluorescence assay for amyloid identification. Such an approach not only strengthens the reliability of the ThT assay, but also provides new opportunities for structural characterization of amyloid fibrils.


Subject(s)
Congo Red/chemistry , Thiazoles/chemistry , Amyloid , Benzothiazoles , Fluorescence , Fluorescent Dyes , Kinetics , Protein Binding , Reproducibility of Results
10.
Soft Matter ; 11(47): 9218, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26580712

ABSTRACT

Correction for 'Formation of lipid/peptide tubules by IAPP and temporin B on supported lipid membranes' by Paavo K. J. Kinnunen et al., Soft Matter, 2015, DOI: 10.1039/b925228b.

11.
Soft Matter ; 11(47): 9188-200, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26575388

ABSTRACT

The conversion of various and to is accelerated by , which are also postulated to represent targets mediating the cytotoxicity of protofibrils. Yet, our understanding of the molecular details governing -catalyzed fibrillogenesis of precursors remains limited. To obtain insight into the intricate interplay of and biophysics we have recently introduced supported bilayers (SLBs) with fluorescent analogs as model biomembranes, observed by time-lapse . Here we demonstrate that human islet () induces within minutes of its application on bilayers the expulsion of numerous flexible tubules from the . Intriguingly, these flexible tubules gradually evolve into a network of straight tubes locally attached to the substrate. Two-color imaging of the and the fluorescently labeled revealed to be distributed along the . Similar linear tubules were observed with the antimicrobial temporin B and the non-amyloidogenic rat , revealing that the above mesoscopic perturbations are not related to formation by the human . Micromanipulation experiments revealed that the linearity of the tubules was caused by tension, stretching the tubules between their points of attachment to the substrate. After longer incubation times, for SLBs containing the oxidatively modified 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (, bearing a terminal carboxyl at the end of the chain) and human (but not the other ) some of the straight transformed into highly regular helices. This is likely to reflect tension originating from an efficient aggregation of the into parallelly aligned bundles, associated with tubes containing the oxidized , possibly together with a concomitant flow of along the tubules to the immobile aggregates attaching the tubules to the substrate, these two processes cause, upon shortening of the linear scaffold, the attached excess tubule to adopt a helical morphology, coiling around the core. The above studies are in line with the multiphasic kinetics of fibrillation in the presence of oxidized containing liposomes, assessed by fluorescence enhancement. In addition to demonstrating the feasibility of SLBs as biomimetic model system for studying -assisted fibrillation, our results accentuate the role of chemical composition in modulation of different stages of this process and the associated transformation of architecture. Accordingly, changes in the chemical nature of cellular arising from pathophysiological processes such as oxidative stress may participate in the triggering amyloidogenesis as well as amplification of its detrimental effects in vivo.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Lipid Bilayers/chemistry , Proteins/chemistry , Antimicrobial Cationic Peptides , Fluorescent Dyes/chemistry , Humans , Islet Amyloid Polypeptide/metabolism , Kinetics , Lipid Bilayers/metabolism , Liposomes/chemistry , Liposomes/metabolism , Microscopy, Fluorescence , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Proteins/metabolism
12.
J Fluoresc ; 25(2): 253-61, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25595057

ABSTRACT

The binding of monomeric and aggregated variants of 1-83 N-terminal fragment of apolipoprotein A-I with substitution mutations G26R, G26R/W@8, G26R/W@50 and G26R/W@72 to the model lipid membranes composed of phosphatidylcholine and its mixture with cholesterol has been investigated using fluorescent probes pyrene and Laurdan. Examination of pyrene spectral behavior did not reveal any marked influence of apoA-I mutants on the hydrocarbon region of lipid bilayer. In contrast, probing the membrane effects by Laurdan revealed decrease in the probe generalized polarization in the presence of aggregated proteins. suggesting that oligomeric and fibrillar apoA-I species induce increase in hydration degree and reduction of lipid packing density in the membrane interfacial region. These findings may shed light on molecular details of amyloid cytotoxicity.


Subject(s)
Apolipoprotein A-I/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Fluorescent Dyes/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/chemistry , Amino Acid Sequence , Amyloid/chemistry , Cholesterol/chemistry , Humans , Laurates/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Sequence Data , Mutation , Peptide Fragments/genetics , Phosphatidylcholines/chemistry , Protein Multimerization , Pyrenes/chemistry
13.
Biochim Biophys Acta ; 1848(2): 544-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25445677

ABSTRACT

Trapping in the endosomes is currently believed to represent the main barrier for transfection. Peptides, which allow endosomal escape have been demonstrated to overcome this barrier, similarly to the entry of viruses. However, the design principles of such endosomolytic peptides remain unclear. We characterized three analogs derived from membrane disrupting antimicrobial peptides (AMP), viz. LL-37, melittin, and bombolitin V, with glutamic acid substituting for all basic residues. These analogs are pH-sensitive and cause negligible membrane permeabilization and insignificant cytotoxicity at pH7.4. However, at pH5.0, prevailing in endosomes, membrane binding and hemolysis of human erythrocytes become evident. We first condensed the emerald green fluorescent protein (emGFP) containing plasmid by protamine, yielding 115 nm diameter soluble nanoplexes. For coating of the nanoplex surface with a lipid bilayer we introduced a hydrophobic tether, stearyl-octa-arginine (SR8). The indicated peptides were dissolved in methanol and combined with lipid mixtures in chloroform, followed by drying at RT under a nitrogen flow. The dry residues were hydrated with nanoplexes in Hepes, pH7.4 yielding after a 30 min incubation at RT,rather monodisperse nanoparticles having an average diameter of 150-300 nm, measured by DLS and cryo-TEM. Studies with cell cultures showed the above peptides to yield expression levels comparable to those obtained using Lipofectamine 2000. However, unlike the polydisperse aggregates formed upon mixing Lipofectamine 2000 and plasmid, the procedure described yields soluble, and reasonably monodisperse nanoparticles, which can be expected to be suitable for gene delivery in vivo, using intravenous injection.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Endosomes/metabolism , Melitten/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Transfection/methods , Amino Acid Sequence , Animals , Erythrocytes/chemistry , Erythrocytes/cytology , Gene Expression , Glutamic Acid/chemistry , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hemolysis , Humans , Hydrogen-Ion Concentration , Lipids/chemistry , Mice , Molecular Sequence Data , NIH 3T3 Cells , Nanoparticles/ultrastructure , Oligopeptides/chemistry , Particle Size , Protamines/chemistry , Stearates/chemistry , Cathelicidins
14.
Biochim Biophys Acta ; 1848(1 Pt A): 167-73, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450344

ABSTRACT

Oxidative stress is involved in a number of pathological conditions and the generated oxidatively modified lipids influence membrane properties and functions, including lipid-protein interactions and cellular signaling. Brewster angle microscopy demonstrated oxidatively truncated phosphatidylcholines to promote phase separation in monolayers of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). More specifically, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), was found to increase the miscibility transition pressure of the SM/Chol-phase. Lateral diffusion of lipids is influenced by a variety of membrane properties, thus making it a sensitive parameter to observe the coexistence of different lipid phases, for instance. The dependence on lipid lateral packing of the lateral diffusion of fluorophore-containing phospholipid analogs was investigated in Langmuir monolayers composed of POPC, SM, and Chol and additionally containing oxidatively truncated phosphatidylcholines, using fluorescence correlation spectroscopy (FCS). To our knowledge, these are the first FCS results on miscibility transition in ternary lipid monolayers, confirming previous results obtained using Brewster angle microscopy on such lipid monolayers. Wide-field fluorescence microscopy was additionally employed to verify the transition, i.e. the loss and reformation of SM/Chol domains.


Subject(s)
Cholesterol/chemistry , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Sphingomyelins/chemistry , Unilamellar Liposomes/chemistry , Algorithms , Diffusion , Microscopy/methods , Models, Chemical , Molecular Structure , Oxidation-Reduction
15.
Interdiscip Perspect Infect Dis ; 2014: 412827, 2014.
Article in English | MEDLINE | ID: mdl-24757444

ABSTRACT

We have recently suggested a novel mechanism, autoendocytosis, for the entry of certain microbes into their hosts, with a key role played by the sphingomyelinase-catalyzed topical conversion of sphingomyelin to ceramide, the differences in the biophysical properties of these two lipids providing the driving force. The only requirement for such microbes to utilize this mechanism is that they should have a catalytically active SMase on their outer surface while the target cells should expose sphingomyelin in the external leaflet of their plasma membrane. In pursuit of possible microbial candidates, which could utilize this putative mechanism, we conducted a sequence similarity search for SMase. Because of the intriguing cellular and biochemical characteristics of the poorly understood entry of Chlamydia into its host cells these microbes were of particular interest. SMase activity was measured in vitro from isolated C. pneumoniae elementary bodies (EB) and in the lysate from E. coli cells transfected with a plasmid expressing CPn0300 protein having sequence similarity to SMase. Finally, pretreatment of host cells with exogenous SMase resulting in loss plasma membrane sphingomyelin attenuated attachment of EB.

16.
Nanomedicine ; 10(6): 1243-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24685945

ABSTRACT

Drug release from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes occurs close to the main transition temperature Tm=41°C. The exact release temperature can be adjusted by additional lipids, which shift Tm. A major issue is drug leakage at 37°C. We here describe a novel approach with improved drug retention yet rapid release. To obtain spherical, smooth liposomes we included: i) 2mol% cholesterol, to soften bilayers (Lemmich et al 1997), ii) lipids, which due to their spontaneous curvature stabilize the negative and positive curvatures of the inner and outer leaflets of unilamellar liposomes. In addition to differential scanning calorimetry (DSC) and fluorescence spectroscopy, the lipid mixtures were analyzed by a Langmuir balance for their elastic properties and lipid packing, aiming at high elasticity modulus CS(-1). Maxima in CS(-1) coincided with minima in the free energy of lateral mixing. These liposomes have reduced drug leakage, yet retain rapid release. FROM THE CLINICAL EDITOR: This paper reports the development of optimized DPPC liposomes for drug delivery, with reduced drug leakage but maintained rapid release.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , Antibiotics, Antineoplastic/administration & dosage , Delayed-Action Preparations/chemistry , Doxorubicin/administration & dosage , Liposomes/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Liposomes/ultrastructure , Phase Transition , Temperature
17.
J Fluoresc ; 24(3): 899-907, 2014 May.
Article in English | MEDLINE | ID: mdl-24596055

ABSTRACT

Förster resonance energy transfer (FRET) between anthrylvinyl-labeled phosphatidylcholine (AV-PC) as a donor and newly synthesized benzanthrones (referred to here as A8, A6, AM12, AM15 and AM18) as acceptors has been examined to gain insight into molecular level details of the interactions between benzanthrone dyes and model lipid membranes composed of zwitterionic lipid phosphatidylcholine and its mixtures with anionic lipids cardiolipin (CL) and phosphatidylglycerol (PG). FRET data were quantitatively analyzed in terms of the model of energy transfer in two-dimensional systems taking into account the distance dependence of orientation factor. Evidence for A8 location in phospholipid headgroup region has been obtained. Inclusion of CL and PG into PC bilayer has been found to induce substantial relocation of A6, AM12, AM15 and AM18 from hydrophobic membrane core to lipid-water interface.


Subject(s)
Benz(a)Anthracenes/chemistry , Cardiolipins/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Lipid Bilayers/chemistry , Phosphatidylglycerols/chemistry , Models, Theoretical , Phosphatidylcholines/chemistry , Spectrometry, Fluorescence
18.
Biochim Biophys Acta ; 1838(5): 1344-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24480410

ABSTRACT

While a significant fraction of heat shock protein 70 (Hsp70) is membrane associated in lysosomes, mitochondria, and the outer surface of cancer cells, the mechanisms of interaction have remained elusive, with no conclusive demonstration of a protein receptor. Hsp70 contains two Trps, W90 and W580, in its N-terminal nucleotide binding domain (NBD), and the C-terminal substrate binding domain (SBD), respectively. Our fluorescence spectroscopy study using Hsp70 and its W90F and W580F mutants, and Hsp70-∆SBD and Hsp70-∆NBD constructs, revealed that binding to liposomes depends on their lipid composition and involves both NBD and SBD. Association of Hsp70 with phosphatidylcholine (PC) liposomes is weak, with insertion of its Trps into the bilayer hydrocarbon region. In the presence of cardiolipin (CL), bis-monoacylglycero phosphate (BMP), or phosphatidylserine (PS) Hsp70 attaches to membranes peripherally, without penetration. Our data suggest that the organelle distribution of Hsp70 is determined by their specific lipid compositions, with Hsp70 associating with the above lipids in mitochondria, lysosomes, and the surface of cancer cells, respectively. NBD and SBD attach to lipids by extended phospholipid anchorage, with specific acidic phospholipids associating with Hsp70 in the extended conformation with acyl chains inserting into hydrophobic crevices within Hsp70, and other chains remaining in the bilayer. This anchorage is expected to cause a stringent orientation of Hsp70 on the surface. Our data further suggest that acidic phospholipids induce a transition of SBD into the molten globule state, which may be essential to allow SBD-substrate interaction also within the hydrophobic bilayer interior acyl chain region.


Subject(s)
Cell Membrane/metabolism , HSP70 Heat-Shock Proteins/metabolism , Lipid Bilayers/metabolism , Membrane Proteins/metabolism , Cardiolipins/metabolism , Humans , Lipid Metabolism , Liposomes/metabolism , Mitochondria/metabolism , Models, Molecular , Phosphatidylcholines/metabolism , Phosphatidylserines/metabolism , Phospholipids/metabolism , Protein Binding , Protein Structure, Tertiary
19.
Nanomedicine (Lond) ; 9(14): 2143-55, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24471501

ABSTRACT

AIM: To validate a novel sustained delivery system of liposome nanocarriers for inner-ear therapy and to investigate the transport pathway for their delivery. MATERIALS & METHODS: Liposome nanocarriers containing gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (LPS+Gd-DOTA) were developed for MRI tracking the in vitro release profile and for in vivo uptake studies. RESULTS: Encapsulating Gd-DOTA did not modify the liposomes. The LPS+Gd-DOTA nanocarriers were slowly released from a miniature osmotic pump. The LPS+Gd-DOTA moved along the ossicular chain toward the oval window after an epitympanic injection, whereas they traveled directly to the round window after a mesotympanic injection. However, the round window membrane was the major pathway for the LPS+Gd-DOTA to enter the inner ear. LPS+Gd-DOTA were visualized on both sides of the cochlea within 6 days of in vivo delivery via the osmotic pump. DISCUSSION: The novel sustained inner-ear delivery system induced liposome nanocarriers into the inner ear efficiently without causing obvious adverse effect. There is the potential of using the system to administrate therapeutics in treating inner-ear diseases in the clinic.


Subject(s)
Drug Carriers , Ear, Inner/drug effects , Liposomes , Nanostructures , Animals , Rats , Rats, Sprague-Dawley
20.
Amyloid ; 21(2): 88-96, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24471790

ABSTRACT

Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) is a mammalian protein that is a member of the Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis related proteins group 1 (CAP) superfamily of proteins. A role for the common CAP domain in the function of the diverse superfamily members has not been described so far. Here, we show by a combination of independent techniques including electron microscopy, Thioflavin T fluorescence, and circular dichroism that GAPR-1 has the capability to form amyloid-like fibrils in the presence of liposomes containing negatively charged lipids. Surprisingly, GAPR-1 was also shown to bind the amyloid-oligomer specific antibody A11 in the absence of lipids, indicating that GAPR-1 has an intrinsic tendency to form oligomers. This behavior is characteristic for proteins that interfere with Aß aggregation and indeed we found that GAPR-1 effectively inhibited aggregation of Aß(1-40) peptide. Immuno-dot blot analysis revealed that GAPR-1 binds to prefibrillar oligomeric Aß structures during the early stages of fibril formation. Another CAP domain-containing protein, CRISP2, was also capable of forming fibrils, indicating that oligomerization and fibril formation is a shared characteristic between CAP family members. We suggest that the CAP domain may regulate protein oligomerization in a large variety of proteins that define the CAP superfamily.


Subject(s)
Amyloid/chemistry , Membrane Proteins/chemistry , Phospholipids/chemistry , Cell Adhesion Molecules , Circular Dichroism , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Membrane Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...