Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Prostaglandins Other Lipid Mediat ; 152: 106500, 2021 02.
Article in English | MEDLINE | ID: mdl-33038487

ABSTRACT

Prostaglandins are a diverse family of biological active molecules that are synthesized after liberation of arachnidonic or linolenic acid from the plasma membrane by phospholipase A2 (PLA2). Specific prostaglandins may be pro-inflammatory or anti-inflammatory due to a poorly understood biochemical equilibrium. Some of the anti-inflammatory prostaglandins namely, prostaglandin A1 (PGA1) and prostaglandin E1 (PGE1) have a cyclopentenone moiety that can react and modify a protein's activity. These two prostaglandins are electrophilic reactive lipid species and are formed as a result of the reaction cascade initiated by PLA2. It was of interest to study the interaction with these prostaglandins as they could either amplify or block this enzyme's activity. We found that the former is true initially as there is a shorter time to activate the protein on the lipid membrane and an overall increase in hydrolysis was observed when PGA1 and PGE1 prostaglandin was added with PLA2 and liposomes. The interfacial activation model was further explored in which there is a modification of the enzyme rather than a modifcation of the substrate. However, after a time the protein was shown to form amyloid like fibrils thereby blocking further hydrolysis. The fibrillization kinetics in the presence of the one of the prostaglandins was monitored using thioflavin T (ThT) and the resulting fibrils were characterized using transmission electron microscopy (TEM) and atomic force microscopy (AFM). Modification of PLA2 by these prostaglandins leading to amyloid like fibrils gives an additional perspective of control of the interfacial activation mechanism of this enzyme.


Subject(s)
Phospholipases A2 , Prostaglandins , Cell Membrane/metabolism , Hydrolysis , Kinetics
2.
Nanoscale Res Lett ; 12(1): 372, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28549377

ABSTRACT

Liposome nanocarriers (LPNs) are potentially the future of inner ear therapy due to their high drug loading capacity and efficient uptake in the inner ear after a minimally invasive intratympanic administration. However, information on the biocompatibility of LPNs in the inner ear is lacking. The aim of the present study is to document the biocompatibility of LPNs in the inner ear after intratympanic delivery. LPNs with or without gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (Gd-DOTA) were delivered to the rats through transtympanic injection. The distribution of the Gd-DOTA-containing LPNs in the middle and inner ear was tracked in vivo using MRI. The function of the middle and inner ear barriers was evaluated using gadolinium-enhanced MRI. The auditory function was measured using auditory brainstem response (ABR). The potential inflammatory response was investigated by analyzing glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression in the inner ear. The potential apoptosis was analyzed using terminal transferase (TdT) to label the free 3'OH breaks in the DNA strands of apoptotic cells with TMR-dUTP (TUNEL staining). As a result, LPNs entered the inner ear efficiently after transtympanic injection. The transtympanic injection of LPNs with or without Gd-DOTA neither disrupted the function of the middle and inner ear barriers nor caused hearing impairment in rats. The critical inflammatory biological markers in the inner ear, including glycosaminoglycan and hyaluronic acid secretion and CD44 and TLR2 expression, were not influenced by the administration of LPNs. There was no significant cell death associated with the administration of LPNs. The transtympanic injection of LPNs is safe for the inner ear, and LPNs may be applied as a drug delivery matrix in the clinical therapy of sensorineural hearing loss.

3.
Langmuir ; 32(25): 6524-33, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27260273

ABSTRACT

Oxidized phospholipids occur naturally in conditions of oxidative stress and have been suggested to play an important role in a number of pathological conditions due to their effects on a lipid membrane acyl chain orientation, ordering, and permeability. Here we investigate the effect of the oxidized phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) on a model membrane of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using a combination of (13)C-(1)H dipolar-recoupling nuclear magnetic resonance (NMR) experiments and united-atom molecular dynamics (MD) simulations. The obtained experimental order parameter SCH profiles show that the presence of 30 mol % PazePC in the bilayer significantly increases the gauche content of the POPC acyl chains, therefore decreasing the thickness of the bilayer, although with no stable bilayer pore formation. The MD simulations reproduce the disordering effect and indicate that the orientation of the azelaoyl chain is highly dependent on its protonation state with acyl chain reversal for fully deprotonated states and a parallel orientation along the interfacial plane for fully protonated states, deprotonated and protonated azelaoyl chains having negative and positive SCH profiles, respectively. Only fully or nearly fully protonated azelaoyl chain are observed in the (13)C-(1)H dipolar-recoupling NMR experiments. The experiments show positive SCH values for the azelaoyl segments confirming for the first time that oxidized chains with polar termini adopt a parallel orientation to the bilayer plane as predicted in MD simulations.


Subject(s)
Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Phosphorylcholine/analogs & derivatives , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Phosphorylcholine/chemistry
4.
Biochim Biophys Acta ; 1858(2): 264-73, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26656184

ABSTRACT

In order to obtain molecular level insight into the biophysics of the apoptosis promoting phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) we studied its partitioning into different lipid phases by isothermal titration calorimetry (ITC). To aid the interpretation of these data for PazePC, we additionally characterized by both ITC and fluorescence spectroscopy the fluorescent phospholipid analog 1-palmitoyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine (NBD-C6-PC), which similarly to PazePC can adopt extended conformation in lipid bilayers. With the NBD-hexanoyl chain reversing its direction and extending into the aqueous space out of the bilayer, 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) becomes accessible to the water soluble dithionite, which reduces to non-fluorescent product. Our results suggest that these phospholipid derivatives first partition and penetrate into the outer bilayer leaflet of liquid disordered phase liposomes composed of unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Upon increase up to 2 mol% PazePC and NBD-C6-PC of the overall content, flip-flop from the outer into the inner bilayer leaflet commences. Interestingly, the presence of 40 mol% cholesterol in POPC liposomes did not abrogate the partitioning of PazePC into the liquid ordered phase. In contrast, only insignificant partitioning of PazePC and NBD-C6-PC into sphingomyelin/cholesterol liposomes was evident, highlighting a specific membrane permeability barrier function of this particular lipid composition against oxidatively truncated PazePC, thus emphasizing the importance of detailed characterization of the biophysical properties of membranes found in different cellular organelles, in terms of providing barriers for lipid-mediated cellular signals in processes such as apoptosis. Our data suggest NBD-C6-PC to represent useful fluorescent probe to study the cellular dynamics of oxidized phospholipid species, such as PazePC.


Subject(s)
Lipid Bilayers/chemistry , Models, Chemical , Phosphatidylcholines/chemistry
5.
Soft Matter ; 11(47): 9218, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26580712

ABSTRACT

Correction for 'Formation of lipid/peptide tubules by IAPP and temporin B on supported lipid membranes' by Paavo K. J. Kinnunen et al., Soft Matter, 2015, DOI: 10.1039/b925228b.

6.
Soft Matter ; 11(47): 9188-200, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26575388

ABSTRACT

The conversion of various and to is accelerated by , which are also postulated to represent targets mediating the cytotoxicity of protofibrils. Yet, our understanding of the molecular details governing -catalyzed fibrillogenesis of precursors remains limited. To obtain insight into the intricate interplay of and biophysics we have recently introduced supported bilayers (SLBs) with fluorescent analogs as model biomembranes, observed by time-lapse . Here we demonstrate that human islet () induces within minutes of its application on bilayers the expulsion of numerous flexible tubules from the . Intriguingly, these flexible tubules gradually evolve into a network of straight tubes locally attached to the substrate. Two-color imaging of the and the fluorescently labeled revealed to be distributed along the . Similar linear tubules were observed with the antimicrobial temporin B and the non-amyloidogenic rat , revealing that the above mesoscopic perturbations are not related to formation by the human . Micromanipulation experiments revealed that the linearity of the tubules was caused by tension, stretching the tubules between their points of attachment to the substrate. After longer incubation times, for SLBs containing the oxidatively modified 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (, bearing a terminal carboxyl at the end of the chain) and human (but not the other ) some of the straight transformed into highly regular helices. This is likely to reflect tension originating from an efficient aggregation of the into parallelly aligned bundles, associated with tubes containing the oxidized , possibly together with a concomitant flow of along the tubules to the immobile aggregates attaching the tubules to the substrate, these two processes cause, upon shortening of the linear scaffold, the attached excess tubule to adopt a helical morphology, coiling around the core. The above studies are in line with the multiphasic kinetics of fibrillation in the presence of oxidized containing liposomes, assessed by fluorescence enhancement. In addition to demonstrating the feasibility of SLBs as biomimetic model system for studying -assisted fibrillation, our results accentuate the role of chemical composition in modulation of different stages of this process and the associated transformation of architecture. Accordingly, changes in the chemical nature of cellular arising from pathophysiological processes such as oxidative stress may participate in the triggering amyloidogenesis as well as amplification of its detrimental effects in vivo.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Lipid Bilayers/chemistry , Proteins/chemistry , Antimicrobial Cationic Peptides , Fluorescent Dyes/chemistry , Humans , Islet Amyloid Polypeptide/metabolism , Kinetics , Lipid Bilayers/metabolism , Liposomes/chemistry , Liposomes/metabolism , Microscopy, Fluorescence , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Proteins/metabolism
7.
Biochim Biophys Acta ; 1848(2): 544-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25445677

ABSTRACT

Trapping in the endosomes is currently believed to represent the main barrier for transfection. Peptides, which allow endosomal escape have been demonstrated to overcome this barrier, similarly to the entry of viruses. However, the design principles of such endosomolytic peptides remain unclear. We characterized three analogs derived from membrane disrupting antimicrobial peptides (AMP), viz. LL-37, melittin, and bombolitin V, with glutamic acid substituting for all basic residues. These analogs are pH-sensitive and cause negligible membrane permeabilization and insignificant cytotoxicity at pH7.4. However, at pH5.0, prevailing in endosomes, membrane binding and hemolysis of human erythrocytes become evident. We first condensed the emerald green fluorescent protein (emGFP) containing plasmid by protamine, yielding 115 nm diameter soluble nanoplexes. For coating of the nanoplex surface with a lipid bilayer we introduced a hydrophobic tether, stearyl-octa-arginine (SR8). The indicated peptides were dissolved in methanol and combined with lipid mixtures in chloroform, followed by drying at RT under a nitrogen flow. The dry residues were hydrated with nanoplexes in Hepes, pH7.4 yielding after a 30 min incubation at RT,rather monodisperse nanoparticles having an average diameter of 150-300 nm, measured by DLS and cryo-TEM. Studies with cell cultures showed the above peptides to yield expression levels comparable to those obtained using Lipofectamine 2000. However, unlike the polydisperse aggregates formed upon mixing Lipofectamine 2000 and plasmid, the procedure described yields soluble, and reasonably monodisperse nanoparticles, which can be expected to be suitable for gene delivery in vivo, using intravenous injection.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Endosomes/metabolism , Melitten/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Transfection/methods , Amino Acid Sequence , Animals , Erythrocytes/chemistry , Erythrocytes/cytology , Gene Expression , Glutamic Acid/chemistry , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hemolysis , Humans , Hydrogen-Ion Concentration , Lipids/chemistry , Mice , Molecular Sequence Data , NIH 3T3 Cells , Nanoparticles/ultrastructure , Oligopeptides/chemistry , Particle Size , Protamines/chemistry , Stearates/chemistry , Cathelicidins
8.
Biochim Biophys Acta ; 1848(1 Pt A): 167-73, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450344

ABSTRACT

Oxidative stress is involved in a number of pathological conditions and the generated oxidatively modified lipids influence membrane properties and functions, including lipid-protein interactions and cellular signaling. Brewster angle microscopy demonstrated oxidatively truncated phosphatidylcholines to promote phase separation in monolayers of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol). More specifically, 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), was found to increase the miscibility transition pressure of the SM/Chol-phase. Lateral diffusion of lipids is influenced by a variety of membrane properties, thus making it a sensitive parameter to observe the coexistence of different lipid phases, for instance. The dependence on lipid lateral packing of the lateral diffusion of fluorophore-containing phospholipid analogs was investigated in Langmuir monolayers composed of POPC, SM, and Chol and additionally containing oxidatively truncated phosphatidylcholines, using fluorescence correlation spectroscopy (FCS). To our knowledge, these are the first FCS results on miscibility transition in ternary lipid monolayers, confirming previous results obtained using Brewster angle microscopy on such lipid monolayers. Wide-field fluorescence microscopy was additionally employed to verify the transition, i.e. the loss and reformation of SM/Chol domains.


Subject(s)
Cholesterol/chemistry , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Sphingomyelins/chemistry , Unilamellar Liposomes/chemistry , Algorithms , Diffusion , Microscopy/methods , Models, Chemical , Molecular Structure , Oxidation-Reduction
9.
Interdiscip Perspect Infect Dis ; 2014: 412827, 2014.
Article in English | MEDLINE | ID: mdl-24757444

ABSTRACT

We have recently suggested a novel mechanism, autoendocytosis, for the entry of certain microbes into their hosts, with a key role played by the sphingomyelinase-catalyzed topical conversion of sphingomyelin to ceramide, the differences in the biophysical properties of these two lipids providing the driving force. The only requirement for such microbes to utilize this mechanism is that they should have a catalytically active SMase on their outer surface while the target cells should expose sphingomyelin in the external leaflet of their plasma membrane. In pursuit of possible microbial candidates, which could utilize this putative mechanism, we conducted a sequence similarity search for SMase. Because of the intriguing cellular and biochemical characteristics of the poorly understood entry of Chlamydia into its host cells these microbes were of particular interest. SMase activity was measured in vitro from isolated C. pneumoniae elementary bodies (EB) and in the lysate from E. coli cells transfected with a plasmid expressing CPn0300 protein having sequence similarity to SMase. Finally, pretreatment of host cells with exogenous SMase resulting in loss plasma membrane sphingomyelin attenuated attachment of EB.

10.
Nanomedicine ; 10(6): 1243-52, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24685945

ABSTRACT

Drug release from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes occurs close to the main transition temperature Tm=41°C. The exact release temperature can be adjusted by additional lipids, which shift Tm. A major issue is drug leakage at 37°C. We here describe a novel approach with improved drug retention yet rapid release. To obtain spherical, smooth liposomes we included: i) 2mol% cholesterol, to soften bilayers (Lemmich et al 1997), ii) lipids, which due to their spontaneous curvature stabilize the negative and positive curvatures of the inner and outer leaflets of unilamellar liposomes. In addition to differential scanning calorimetry (DSC) and fluorescence spectroscopy, the lipid mixtures were analyzed by a Langmuir balance for their elastic properties and lipid packing, aiming at high elasticity modulus CS(-1). Maxima in CS(-1) coincided with minima in the free energy of lateral mixing. These liposomes have reduced drug leakage, yet retain rapid release. FROM THE CLINICAL EDITOR: This paper reports the development of optimized DPPC liposomes for drug delivery, with reduced drug leakage but maintained rapid release.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , Antibiotics, Antineoplastic/administration & dosage , Delayed-Action Preparations/chemistry , Doxorubicin/administration & dosage , Liposomes/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Liposomes/ultrastructure , Phase Transition , Temperature
11.
Biochim Biophys Acta ; 1838(5): 1344-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24480410

ABSTRACT

While a significant fraction of heat shock protein 70 (Hsp70) is membrane associated in lysosomes, mitochondria, and the outer surface of cancer cells, the mechanisms of interaction have remained elusive, with no conclusive demonstration of a protein receptor. Hsp70 contains two Trps, W90 and W580, in its N-terminal nucleotide binding domain (NBD), and the C-terminal substrate binding domain (SBD), respectively. Our fluorescence spectroscopy study using Hsp70 and its W90F and W580F mutants, and Hsp70-∆SBD and Hsp70-∆NBD constructs, revealed that binding to liposomes depends on their lipid composition and involves both NBD and SBD. Association of Hsp70 with phosphatidylcholine (PC) liposomes is weak, with insertion of its Trps into the bilayer hydrocarbon region. In the presence of cardiolipin (CL), bis-monoacylglycero phosphate (BMP), or phosphatidylserine (PS) Hsp70 attaches to membranes peripherally, without penetration. Our data suggest that the organelle distribution of Hsp70 is determined by their specific lipid compositions, with Hsp70 associating with the above lipids in mitochondria, lysosomes, and the surface of cancer cells, respectively. NBD and SBD attach to lipids by extended phospholipid anchorage, with specific acidic phospholipids associating with Hsp70 in the extended conformation with acyl chains inserting into hydrophobic crevices within Hsp70, and other chains remaining in the bilayer. This anchorage is expected to cause a stringent orientation of Hsp70 on the surface. Our data further suggest that acidic phospholipids induce a transition of SBD into the molten globule state, which may be essential to allow SBD-substrate interaction also within the hydrophobic bilayer interior acyl chain region.


Subject(s)
Cell Membrane/metabolism , HSP70 Heat-Shock Proteins/metabolism , Lipid Bilayers/metabolism , Membrane Proteins/metabolism , Cardiolipins/metabolism , Humans , Lipid Metabolism , Liposomes/metabolism , Mitochondria/metabolism , Models, Molecular , Phosphatidylcholines/metabolism , Phosphatidylserines/metabolism , Phospholipids/metabolism , Protein Binding , Protein Structure, Tertiary
12.
Nanomedicine (Lond) ; 9(14): 2143-55, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24471501

ABSTRACT

AIM: To validate a novel sustained delivery system of liposome nanocarriers for inner-ear therapy and to investigate the transport pathway for their delivery. MATERIALS & METHODS: Liposome nanocarriers containing gadolinium-tetra-azacyclo-dodecane-tetra-acetic acid (LPS+Gd-DOTA) were developed for MRI tracking the in vitro release profile and for in vivo uptake studies. RESULTS: Encapsulating Gd-DOTA did not modify the liposomes. The LPS+Gd-DOTA nanocarriers were slowly released from a miniature osmotic pump. The LPS+Gd-DOTA moved along the ossicular chain toward the oval window after an epitympanic injection, whereas they traveled directly to the round window after a mesotympanic injection. However, the round window membrane was the major pathway for the LPS+Gd-DOTA to enter the inner ear. LPS+Gd-DOTA were visualized on both sides of the cochlea within 6 days of in vivo delivery via the osmotic pump. DISCUSSION: The novel sustained inner-ear delivery system induced liposome nanocarriers into the inner ear efficiently without causing obvious adverse effect. There is the potential of using the system to administrate therapeutics in treating inner-ear diseases in the clinic.


Subject(s)
Drug Carriers , Ear, Inner/drug effects , Liposomes , Nanostructures , Animals , Rats , Rats, Sprague-Dawley
13.
Amyloid ; 21(2): 88-96, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24471790

ABSTRACT

Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) is a mammalian protein that is a member of the Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis related proteins group 1 (CAP) superfamily of proteins. A role for the common CAP domain in the function of the diverse superfamily members has not been described so far. Here, we show by a combination of independent techniques including electron microscopy, Thioflavin T fluorescence, and circular dichroism that GAPR-1 has the capability to form amyloid-like fibrils in the presence of liposomes containing negatively charged lipids. Surprisingly, GAPR-1 was also shown to bind the amyloid-oligomer specific antibody A11 in the absence of lipids, indicating that GAPR-1 has an intrinsic tendency to form oligomers. This behavior is characteristic for proteins that interfere with Aß aggregation and indeed we found that GAPR-1 effectively inhibited aggregation of Aß(1-40) peptide. Immuno-dot blot analysis revealed that GAPR-1 binds to prefibrillar oligomeric Aß structures during the early stages of fibril formation. Another CAP domain-containing protein, CRISP2, was also capable of forming fibrils, indicating that oligomerization and fibril formation is a shared characteristic between CAP family members. We suggest that the CAP domain may regulate protein oligomerization in a large variety of proteins that define the CAP superfamily.


Subject(s)
Amyloid/chemistry , Membrane Proteins/chemistry , Phospholipids/chemistry , Cell Adhesion Molecules , Circular Dichroism , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Membrane Proteins/metabolism
14.
Biochem Biophys Res Commun ; 436(2): 349-53, 2013 Jun 28.
Article in English | MEDLINE | ID: mdl-23747420

ABSTRACT

Phospholipases A2 (PLA2) catalyze the hydrolytic cleavage of free fatty acids from the sn-2 OH-moiety of glycerophospholipids. These enzymes have a number of functions, from digestion to signaling and toxicity of several venoms. They have also been implicated in inflammation and are connected to diverse diseases, such as cancer, ischemia, atherosclerosis, and schizophrenia. Accordingly, there is a keen interest to develop selective inhibitors for therapeutic use. We recently proposed a novel mechanism for the control of PLA2 activity with highly active protofibrils of PLA2 existing transiently before conversion to inactive amyloid fibrils [19]. In keeping with the above mechanism several algorithms identified (85)KMYFNLI(91) and (17)AALSYGFYG(25) in bee venom (bv) and human lacrimal fluid (Lf) PLA2, respectively, as a regions potentially forming amyloid type aggregates. Interestingly, in keeping with the proposed role of these sequences in the control of the activity of these enzymes, preincubation of 2nM bvPLA2 with (85)KMYFNLI(91) caused complete inhibition of PLA2 activity while the scrambled control peptide YNFLIMK had no effect. Approximately 36% attenuation of the hydrolytic activity of LfPLA2 present in human lacrimal fluid was observed in the presence of 80nM (17)AALSYGFYG(25).


Subject(s)
Enzyme Inhibitors/pharmacology , Oligopeptides/pharmacology , Phospholipases A2, Secretory/antagonists & inhibitors , Algorithms , Amino Acid Sequence , Animals , Bee Venoms/enzymology , Biocatalysis/drug effects , Humans , Hydrolysis/drug effects , Kinetics , Molecular Sequence Data , Phosphatidic Acids/metabolism , Phospholipases A2, Secretory/chemistry , Phospholipases A2, Secretory/metabolism , Protein Multimerization/drug effects , Substrate Specificity , Tears/enzymology
15.
Faraday Discuss ; 161: 499-513; discussion 563-89, 2013.
Article in English | MEDLINE | ID: mdl-23805755

ABSTRACT

Membranes undergo severe changes under oxidative stress conditions due to the creation of oxidized phospholipid (OxPL) species, which possess molecular properties quite different from their parental lipid components. These OxPLs play crucial roles in various pathological disorders and their occurrence is involved in the onset of intrinsic apoptosis, a fundamental pathway in programmed mammalian cell death. However, the molecular mechanisms by which these lipids can exert their apoptotic action via their host membranes (e.g., altering membrane protein function) are poorly understood. Therefore, we studied the impact of OxPLs on the organization and biophysical properties of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) based lipid membranes by differential scanning calorimetry (DSC) and solid state nuclear magnetic resonance (NMR) spectroscopy. Incorporation of defined OxPLs with either a carboxyl group (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC)) or aldehyde (1-palmitoyl-(9'oxononanoyl)-sn-glycero-3-phosphocholine (PoxnoPC)) at their truncated sn-2-chain ends enabled us to reveal OxPL species-dependent differences. The calorimetric studies revealed significant effects of OxPLs on the thermotropic phase behavior of DMPC bilayers, especially at elevated levels where PazePC induced more pronounced effects than PoxnoPC. Temperature-dependent changes in the solid state 31P NMR spectra, which provided information of the lipid headgroup region in these mixed membrane systems, reflected this complex phase behavior. In the temperature region between 293 K (onset of the Lalpha-phase) and 298 K, two overlapping NMR spectra were visible which reflect the co-existence of two liquid-crystalline lamellar phases with presumably one reflecting OxPL-poor domains and the other OxPL-rich domains. Deconvolution of the DSC profiles also revealed these two partially overlapping thermal events. In addition, a third thermal, non-NMR-visible, event occurred at low temperatures, which can most likely be associated to a solid-phase mixing/demixing process of the OxPL-containing membranes. The observed phase transitions were moved to higher temperatures in the presence of heavy water due its condensing effect, where additional wideline 2H-NMR studies revealed a complex hydration pattern in the presence of OxPLs.


Subject(s)
Membrane Lipids/chemistry , Phospholipids/chemistry , Calorimetry, Differential Scanning , Dimyristoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Membrane Lipids/metabolism , Oxidation-Reduction , Phospholipids/metabolism , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/chemistry , Temperature
16.
FEBS J ; 280(12): 2806-16, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23506295

ABSTRACT

The oxidation of lipids has been shown to impact virtually all cellular processes. The paradigm has been that this involvement is due to interference with the functions of membrane-associated proteins. It is only recently that methodological advances in molecular-level detection and identification have begun to provide insights into oxidative lipid modification and its involvement in cell signaling as well as in major diseases and inflammation. Extensive evidence suggests a correlation between lipid peroxidation and degenerative neurological diseases such as Parkinson's and Alzheimer's, as well as type 2 diabetes and cancer. Despite the obvious relevance of understanding the molecular basis of the above ailments, the exact modes of action of oxidized lipids have remained elusive. In this minireview, we summarize recent findings on the biophysical characteristics of biomembranes following oxidative derivatization of their lipids, and how these altered properties are involved in both physiological processes and major pathological conditions. Lipid-bearing, oxidatively truncated and functionalized acyl chains are known to modify membrane bulk physical properties, such as thermal phase behavior, bilayer thickness, hydration and polarity profiles, as manifest in the altered structural dynamics of lipid bilayers, leading to augmented membrane permeability, fast lipid transbilayer diffusion (flip-flop), loss of lipid asymmetry (scrambling) and phase segregation (the formation of 'rafts'). These changes, together with the generated reactive lipid derivatives, can be further expected to interfere with lipid-protein interactions, influencing metabolic pathways, causing inflammation, the execution phase in apoptosis and initiating pathological processes.


Subject(s)
Phosphatidylcholines/physiology , Signal Transduction , Amyloid beta-Peptides/metabolism , Apoptosis , Cell Membrane Permeability , Humans , Oxidation-Reduction , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Phospholipids/physiology
17.
Biophys J ; 103(2): 247-54, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22853902

ABSTRACT

Lipid lateral segregation in the plasma membrane is believed to play an important role in cell physiology. Sphingomyelin (SM) and cholesterol (Chol)-enriched microdomains have been proposed as liquid-ordered phase platforms that serve to localize signaling complexes and modulate the intrinsic activities of the associated proteins. We modeled plasma membrane domain organization using Langmuir monolayers of ternary POPC/SM/Chol as well as DMPC/SM/Chol mixtures, which exhibit a surface-pressure-dependent miscibility transition of the coexisting liquid-ordered and -disordered phases. Using Brewster angle microscopy and Langmuir monolayer compression isotherms, we show that the presence of an oxidatively modified phosphatidylcholine, 1-palmitoyl-2-azelaoyl-sn-glydecero-3-phosphocholine, efficiently opposes the miscibility transition and stabilizes micron-sized domain separation at lipid lateral packing densities corresponding to the equilibrium lateral pressure of ∼32 mN/m that is suggested to prevail in bilayer membranes. This effect is ascribed to augmented hydrophobic mismatch induced by the oxidatively truncated phosphatidylcholine. To our knowledge, our results represent the first quantitative estimate of the relevant level of phospholipid oxidation that can potentially induce changes in cell membrane organization and its associated functions.


Subject(s)
Cholesterol/chemistry , Phase Transition , Phosphatidylcholines/chemistry , Sphingomyelins/chemistry , Microscopy , Oxidation-Reduction , Pressure , Surface Properties , Temperature
18.
Int J Nanomedicine ; 7: 3475-85, 2012.
Article in English | MEDLINE | ID: mdl-22848172

ABSTRACT

BACKGROUND: The neurotrophic receptor tyrosine kinase B (TrkB) has diverse signaling roles in neurons and tumor cells. Accordingly, its suppressive targeting is of interest in neuroblastoma and other tumors, whereas its role in improving survival is focused in neurons. Here we describe targeting of TrkB-binding peptide-conjugated liposomes (PCL) to the TrkB-expressing mouse macrophage-like cell line RAW264, and to all-trans-retinoic acid-treated neuron-like TrkB⁺ SH-SY5Y human neuroblastoma cells. METHODS: Binding and internalization of PCL was monitored by flow cytometry and confocal fluorescence microscopy. RESULTS: Internalization of TrkB-targeted PCL by RAW264 cells was enhanced and faster when compared with PCL having the corresponding scrambled peptide. Likewise, binding and augmented uptake were confirmed for TrkB⁺ SH-SY5Y cells, with targeted PCL appearing in the cytoplasm after 20 minutes of incubation. CONCLUSION: We demonstrate here the feasibility of targeting liposomes to TrkB-expressing cells by 18-mer peptides, promoting cellular uptake (at least partly into endosomes) via receptor-mediated pathways.


Subject(s)
Liposomes/metabolism , Peptides/metabolism , Receptor, trkB/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Fluorescent Dyes/pharmacokinetics , Histocytochemistry , Humans , Kinetics , Liposomes/chemistry , Liposomes/pharmacokinetics , Mice , Molecular Sequence Data , Peptides/chemistry , Peptides/pharmacokinetics , Protein Binding , Receptor, trkB/chemistry
19.
Chem Phys Lipids ; 165(6): 689-95, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22771452

ABSTRACT

Accurate determination of lipid concentrations is an obligatory routine in a research laboratory engaged in studies using this class of biomaterials. For phospholipids, this is frequently accomplished using the phosphate assay (Bartlett, G.R. Phosphorus Assay in Column Chromatography. J. Biol. Chem. 234, 466-468, 1959). Given the purity of the currently commercially available synthetic and isolated natural lipids, we have observed that determination of the dry weight of lipid stock solutions provides the fastest, most accurate, and generic method to assay their concentrations. The protocol described here takes advantage of the high resolution and accuracy obtained by modern weighing technology. We assayed by this technique the concentrations of a number of phosphatidylcholine samples, with different degrees of acyl chain saturation and length, and in different organic solvents. The results were compared with those from Bartlett assay, (31)P NMR, and Langmuir compression isotherms. The data obtained show that the gravimetric assay yields lipid concentrations with a resolution similar or better than obtained by the other techniques.


Subject(s)
Phospholipids/analysis , Thermogravimetry , Magnetic Resonance Spectroscopy , Phosphatidylcholines/chemistry , Quartz Crystal Microbalance Techniques , Solvents/chemistry
20.
Biochim Biophys Acta ; 1818(10): 2446-55, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22542574

ABSTRACT

Oxidative stress is associated with several major ailments. However, it is only recently that the developments in our molecular level understanding of the consequences of oxidative stress in modifying the chemical structures of biomolecules, lipids in particular, are beginning to open new emerging insights into the significance of oxidative stress in providing mechanistic insights into the etiologies of these diseases. In this brief review we will first discuss the role of lipid oxidation in controlling the membrane binding of cytochrome c, a key protein in the control of apoptosis. We then present an overview of the impact of oxidized phospholipids on the biophysical properties of lipid bilayers and continue to discuss, how these altered properties can account for the observed enhancement of formation of intermediate state oligomers by cytotoxic amyloid forming peptides associated with pathological conditions as well as host defense peptides of innate immunity. In the third part, we will discuss how the targeting of oxidized phospholipids by i) pathology associated peptides and ii) host defense peptides can readily explain the observed clinical correlations associating Alzheimer's and Parkinson's diseases with increased risk for type 2 diabetes and age-related macular degeneration, and the apparent protective effect of Alzheimer's and Parkinson's diseases from some cancers, as well as the inverse, apparent protection by cancer from Alzheimer's and Parkinson's diseases. This article is part of a Special Issue entitled: Oxidized phospholipids-Their properties and interactions with proteins.


Subject(s)
Biophysical Phenomena , Disease , Phospholipids/metabolism , Proteins/metabolism , Signal Transduction , Cell Death , Humans , Oxidation-Reduction , Phospholipids/chemistry , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...