Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 147: 73-82, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35623263

ABSTRACT

The use of pyrolysis process to valorize digestate from anaerobic digestion (AD) of municipal sewage sludge for biochar production was piloted in a central biogas plant. The pyrolysis also generates pyrolysis liquid with high organics and nutrient contents that currently has no value and requires treatment, which could potentially be done in AD. As the pyrolysis liquid may contain inhibitory compounds, we investigated the effects of adding the pyrolysis liquid on AD of sewage sludge and thermal hydrolysis pretreated sewage sludge (THSS) simulating the full-scale centralized biogas plant conditions. In batch assays, the pyrolysis liquid as such did not produce any methane, and the 1% and 5% (v/w) shares suppressed the methane production from THSS by 14-19%, while a smaller decrease in methane production was observed with sewage sludge. However, in the semi-continuous reactor experiments, pyrolysis liquid at a 1% (v/w) share was added in sewage sludge or THSS feed without affecting the methane yields or digestate characteristics. The laboratory results indicated that pyrolysis liquid can be treated in AD, while extrapolating the results to the centralized biogas plant indicated minor increase in the overall methane production and an increased potential for ammonium recovery.


Subject(s)
Biofuels , Sewage , Anaerobiosis , Hydrolysis , Methane , Pyrolysis
2.
Bioresour Technol ; 355: 127258, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35526710

ABSTRACT

The pulp and paper industry's mixed sludge represents waste streams with few other means of disposal than incineration. Hydrothermal carbonization (HTC) could be advantageous for the sludge refinement into value-added products, thus complementing the concept of pulp and paper mills as biorefineries. Laboratory HTC was performed on mixed sludge (at 32% and 15% total solids) at temperatures of 210-250 °C for 30 or 120 min, and the characteristics of the HTC products were evaluated for their potential for energy, carbon, and nutrient recovery. The energy content increased from 14.9 MJ/kg in the mixed sludge up to 20.5 MJ/kg in the hydrochars. The produced filtrates had 12-15-fold higher COD and 3-5-fold higher volumetric methane production than untreated sludge filtrates, even though the methane yield against g-COD was lower. The increased value of the hydrochars in terms of energy content and carbon sequestration potential promote HTC deployment in sludge treatment and upgrading.


Subject(s)
Sewage , Water Purification , Carbon , Incineration , Methane , Temperature
3.
Water Res ; 201: 117284, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34107365

ABSTRACT

This study aimed to assess the role of hydrothermal carbonisation (HTC) in digestate processing in centralised biogas plants receiving dewatered sludge from regional wastewater treatment plants and producing biomethane and fertilisers. Chemically conditioned and mechanically dewatered sludge was used as such (total solids (TS) 25%) or as diluted (15% TS) with reject water in 30 min or 120 min HTC treatments at 210 °C, 230 °C or 250 °C, and the produced slurry was filtered to produce hydrochars and filtrates. The different hydrochars contributed to 20-55% of the original mass, 72-88% of the TS, 74-87% of the energy content, 71-92% of the carbon, above 86% of phosphorous and 38-64% of the nitrogen present in the original digestates. The hydrochars' energy content (higher heating values were 11.3-12.2 MJ/kg-TS) were similar to that of the digestates, while the ash contents increased (from 43% up to 57%). HTC treatments produced filtrates in volumes of 42-76% of the dewatered digestate, having a soluble chemical oxygen demand (SCOD) of 28-44 g/L, of which volatile fatty acids (VFAs) contributed 10-34%, and methane potentials of 182-206 mL-CH4/g-SCOD without any major indication of inhibition. All 32 pharmaceuticals detected in the digestates were below the detection limit in hydrochars and filtrates, save for ibuprofen and benzotriazole in filtrate, while heavy metals were concentrated in the hydrochars but below the national limits for fertiliser use, save for mercury. The integration of HTC to a centralised biogas plant was extrapolated to enhance the annual biogas production by 5% and ammonium recovery by 25%, and the hydrochar was estimated to produce 83 GJ upon combustion or to direct 350 t phosphorous to agriculture annually.


Subject(s)
Biofuels , Sewage , Carbon , Methane , Nutrients
4.
Bioresour Technol ; 193: 469-76, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26162525

ABSTRACT

The eicosapentaenoic acid (EPA) containing marine microalga Nannochloropsis oculata was grown in an effluent from anaerobic digestion of excess activated sludge from a wastewater treatment plant serving a combination of a pulp and a paper mill and a municipality (digester effluent, DE), mixed with the effluent of the same wastewater treatment plant. The maximum specific growth rate and photosynthesis of N. oculata were similar in the DE medium and in artificial sea water medium (ASW) but after 7 days, algae grown in the DE medium contained seven times more triacylglycerols (TAGs) per cell than cells grown in ASW, indicating mild stress in the DE medium. However, the volumetric rate of EPA production was similar in the ASW and DE media. The results suggest that N. oculata could be used to produce EPA, utilizing the nutrients available after anaerobic digestion of excess activated sludge of a pulp and paper mill.


Subject(s)
Eicosapentaenoic Acid/biosynthesis , Industrial Waste/analysis , Paper , Stramenopiles/growth & development , Wastewater/chemistry , Biodegradation, Environmental , Metals, Heavy/analysis , Photobioreactors/microbiology , Photosynthesis , Seawater , Stramenopiles/metabolism , Waste Disposal, Fluid
5.
Water Res ; 57: 247-57, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24726994

ABSTRACT

This laboratory-scale study investigated the performance of a low-cost anaerobic digester for microalgae. Low (∼2%) solids content wastewater-grown microalgal biomass (MB) was digested in an unmixed, accumulating-volume reactor (AVR) with solid and liquid separation that enabled a long solids retention time. AVRs (2 or 20 L) were operated at 20 °C, 37 °C or ambient temperature (8-21 °C), and the influence of two pretreatments - low-temperature thermal (50-57 °C) and freeze-thaw - on algal digestion were studied. The highest methane yield from untreated MB was in the 37 °C AVR with 225 L CH4 kg volatile solids (VS)(-1), compared with 180 L CH4 kg VS(-1)added in a conventional, 37 °C completely stirred tank reactor (CSTR), and 101 L CH4 kg VS(-1)added in the 20 °C AVR. Freeze-thaw and low-temperature thermal pretreatments promoted protein hydrolysis and increased methane yields by 32-50% at 20 °C, compared with untreated MB. Pretreatments also increased the mineralisation of nitrogen (41-57%) and phosphorus (76-84%) during digestion. MB digestion at ambient temperature was comparable with digestion at 20 °C, until temperature dropped below 16 °C.


Subject(s)
Aquaculture/methods , Microalgae/growth & development , Wastewater/analysis , Anaerobiosis , Aquaculture/economics , Aquaculture/instrumentation , Biofuels/analysis , Bioreactors , Cold Temperature , Methane/metabolism , Microalgae/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...