Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5101, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730797

ABSTRACT

In shallow subduction zones, fluid behavior impacts various geodynamic processes capable of regulating slip behaviors and forming mud volcanoes. However, evidence of structures that control the fluid transfer within an overriding plate is limited and the physical properties at the source faults of slow earthquakes are poorly understood. Here we present high-resolution seismic velocity models and reflection images of the Hyuga-nada area, Japan, where the Kyushu-Palau ridge subducts. We image distinct kilometer-wide columns in the upper plate with reduced velocities that extend vertically from the seafloor down to 10-13 km depth. We interpret the low-velocity columns as damaged zones caused by seamount subduction and suggest that they serve as conduits, facilitating vertical fluid migration from the plate boundary. The lateral variation in upper-plate velocity and seismic reflectivity along the plate boundary correlates with the distribution of slow earthquakes, indicating that the upper-plate drainage system controls the complex pattern of seismic slip at subduction faults.

2.
Sci Rep ; 12(1): 2677, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177710

ABSTRACT

Recent studies have documented the occurrence of shallow very low frequency earthquakes (VLFE) in subduction zones. The heterogeneity of the materials or stresses that act on the plate interface results in the variable slip rate. Stress on the décollement can be controlled by the décollement geometry and the regional stress, which is also able to control the material properties. We determined the distribution of stress along the shallow portion of the décollement in the Nankai Trough using a three-dimensional (3D) seismic survey and regional stress analysis to construct maps of normalized slip tendency (Ts') and dilation tendency (Td). Alignments of VLFEs trend parallel to the trends of [Formula: see text] and [Formula: see text]. On the other hand, very low [Formula: see text] and [Formula: see text] areas probably act as barriers that limit the number of VLFEs that can migrate towards the trench. Because the [Formula: see text] and [Formula: see text] distributions are derived only from the décollement geometry and the regional stress without incorporating any data on sediment properties, the consistency between the trends suggests that the décollement geometry is the primary control on VLFE activity.

3.
Sci Rep ; 11(1): 20923, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34686724

ABSTRACT

The Chile Triple Junction, where the hot active spreading centre of the Chile Rise system subducts beneath the South American plate, offers a unique opportunity to understand the influence of the anomalous thermal regime on an otherwise cold continental margin. Integrated analysis of various geophysical and geological datasets, such as bathymetry, heat flow measured directly by thermal probes and calculated from gas hydrate distribution limits, thermal conductivities, and piston cores, have improved the knowledge about the hydrogeological system. In addition, rock dredging has evidenced the volcanism associated with ridge subduction. Here, we argue that the localized high heat flow over the toe of the accretionary prism results from fluid advection promoted by pressure-driven discharge (i.e., dewatering/discharge caused by horizontal compression of accreted sediments) as reported previously. However, by computing the new heat flow values with legacy data in the study area, we raise the assumption that these anomalous heat flow values are also promoted by the eastern flank of the currently subducting Chile Rise. Part of the rift axis is located just below the toe of the wedge, where active deformation and vigorous fluid advection are most intense, enhanced by the proximity of the young volcanic chain. Our results provide valuable information to current and future studies related to hydrothermal circulation, seismicity, volcanism, gas hydrate stability, and fluid venting in this natural laboratory.

4.
Science ; 370(6521): 1230-1234, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33273103

ABSTRACT

Microorganisms in marine subsurface sediments substantially contribute to global biomass. Sediments warmer than 40°C account for roughly half the marine sediment volume, but the processes mediated by microbial populations in these hard-to-access environments are poorly understood. We investigated microbial life in up to 1.2-kilometer-deep and up to 120°C hot sediments in the Nankai Trough subduction zone. Above 45°C, concentrations of vegetative cells drop two orders of magnitude and endospores become more than 6000 times more abundant than vegetative cells. Methane is biologically produced and oxidized until sediments reach 80° to 85°C. In 100° to 120°C sediments, isotopic evidence and increased cell concentrations demonstrate the activity of acetate-degrading hyperthermophiles. Above 45°C, populated zones alternate with zones up to 192 meters thick where microbes were undetectable.


Subject(s)
Endospore-Forming Bacteria/growth & development , Geologic Sediments/microbiology , Hot Temperature , Acetates/metabolism , Endospore-Forming Bacteria/metabolism , Geologic Sediments/chemistry , Methane/metabolism
5.
Angew Chem Int Ed Engl ; 55(49): 15292-15296, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27805780

ABSTRACT

The effects of Rh and Ru doping for SrFeO3 , a helimagnetic metal with a cubic perovskite structure, are studied by magnetic and resistivity measurements. Although SrRhO3 is a paramagnetic metal and SrRuO3 is a ferromagnetic one, the Rh doping induces a nearly ferromagnetic metallic state, whereas the Ru doping induces a spin-glass insulating state. Mössbauer measurements evidence a marked difference between SrFe0.8 Rh0.2 O3 and SrFe0.8 Ru0.2 O3 in the formal valences of Fe, which are estimated to be 4+ and 3.75+, respectively. The contrasting magnetic behaviors of Rh- and Ru-doped SrFeO3 are discussed in terms of the subtle balance between the double-exchange ferromagnetism and the superexchange antiferromagnetism.

6.
Sci Rep ; 6: 28184, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27321861

ABSTRACT

Near-trench slip during large megathrust earthquakes (megaquakes) is an important factor in the generation of destructive tsunamis. We proposed a new approach to assessing the near-trench slip potential quantitatively by integrating laboratory-derived properties of fault materials and simulations of fault weakening and rupture propagation. Although the permeability of the sandy Nankai Trough materials are higher than that of the clayey materials from the Japan Trench, dynamic weakening by thermally pressurized fluid is greater at the Nankai Trough owing to higher friction, although initially overpressured fluid at the Nankai Trough restrains the fault weakening. Dynamic rupture simulations reproduced the large slip near the trench observed in the 2011 Tohoku-oki earthquake and predicted the possibility of a large slip of over 30 m for the impending megaquake at the Nankai Trough. Our integrative approach is applicable globally to subduction zones as a novel tool for the prediction of extreme tsunami-producing near-trench slip.

7.
Science ; 342(6163): 1178-80, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24311671
8.
Appl Environ Microbiol ; 76(4): 1198-211, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20023079

ABSTRACT

A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90 degrees C). A moderate temperature gradient extends both horizontally and vertically (5 to 69 degrees C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts.


Subject(s)
Archaea/genetics , Archaea/isolation & purification , Geologic Sediments/microbiology , Seawater/microbiology , Archaea/classification , Archaea/enzymology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Base Sequence , DNA Primers/genetics , Ecosystem , Genes, Archaeal , Genetic Variation , Japan , Molecular Sequence Data , Oxidoreductases/genetics , Phylogeny , RNA, Archaeal/genetics , RNA, Ribosomal/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...