Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 92(8): 933-945, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38591850

ABSTRACT

Bacterial adhesins attach their hosts to surfaces that the bacteria will colonize. This surface adhesion occurs through specific ligand-binding domains located towards the distal end of the long adhesin molecules. However, recognizing which of the many adhesin domains are structural and which are ligand binding has been difficult up to now. Here we have used the protein structure modeling program AlphaFold2 to predict structures for these giant 0.2- to 1.5-megadalton proteins. Crystal structures previously solved for several adhesin regions are in good agreement with the models. Whereas most adhesin domains are linked in a linear fashion through their N- and C-terminal ends, ligand-binding domains can be recognized by budding out from a companion core domain so that their ligand-binding sites are projected away from the axis of the adhesin for maximal exposure to their targets. These companion domains are "split" in their continuity by projecting the ligand-binding domain outwards. The "split domains" are mostly ß-sandwich extender modules, but other domains like a ß-solenoid can serve the same function. Bioinformatic analyses of Gram-negative bacterial sequences revealed wide variety ligand-binding domains are used in their Repeats-in-Toxin adhesins. The ligands for many of these domains have yet to be identified but known ligands include various cell-surface glycans, proteins, and even ice. Recognizing the ligands to which the adhesins bind could lead to ways of blocking colonization by bacterial pathogens. Engineering different ligand-binding domains into an adhesin has the potential to change the surfaces to which bacteria bind.


Subject(s)
Adhesins, Bacterial , Models, Molecular , Protein Domains , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Binding Sites , Protein Binding , Bacterial Adhesion , Ligands , Crystallography, X-Ray
2.
Proc Natl Acad Sci U S A ; 120(39): e2308238120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37729203

ABSTRACT

Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.


Subject(s)
Diatoms , Vibrio cholerae , Animals , Humans , Infant , Mice , Bacteria , Cell Aggregation , Gastrointestinal Tract , Intestines , Vibrio cholerae/genetics
3.
Protein Expr Purif ; 168: 105564, 2020 04.
Article in English | MEDLINE | ID: mdl-31883939

ABSTRACT

Marinobacter hydrocarbonoclasticus is an oil-eating bacterium that possesses a large adhesion protein (MhLap) with the potential to bind extracellular ligands. One of these ligand-binding modules is the ~20-kDa PA14 domain (MhPA14) that has affinity for glucose-based carbohydrates. Previous studies showed this sugar-binding domain is retained on dextran-based size-exclusion resins during chromatography, requiring the introduction of glucose or EDTA to remove the protein from the column. Given the ready availability of such size-exclusion resins in biochemistry laboratories, this study explores the use of MhPA14 as an affinity tag for recombinant protein purification. Two different fusion proteins were tested: 1) Green fluorescent protein (GFP) linked to the N-terminus of the MhPA14 tag; and 2) the ice-binding domain from the Marinomonas primoryensis ice-binding protein (MpIBD) linked to the MhPA14 C-terminus by a TEV cut site. The GFP_MhPA14 fusion visibly bound to Superdex, Sephadex, and Sephacryl resins, but did not bind to Sepharose. Using Superdex resin, dextran-affinity purification proved to be an effective one-step purification strategy for both proteins, superior to even nickel-affinity chromatography. Dextran-affinity chromatography was also the most effective method of separating the MhPA14 tag from MpIBD following TEV proteolysis, as compared to both nickel-affinity and ice-affinity methods. These results indicate that MhPA14 has potential for widespread use in recombinant protein purification.


Subject(s)
Bacterial Proteins/chemistry , Dextrans/chemistry , Ion Exchange Resins/chemistry , Marinobacter/chemistry , Marinomonas/chemistry , Receptors, Cell Surface/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Chromatography, Affinity/methods , Cloning, Molecular , Endopeptidases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Marinobacter/metabolism , Marinomonas/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...