Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(18): 13058-13065, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36067451

ABSTRACT

Leaf-air partition coefficient (Kleaf-air) values are needed to understand and predict pesticide volatilization and persistence in agroecosystems. The objectives of this work were to measure Kleaf-air values and foliar penetration for the insecticide chlorpyrifos (as an active ingredient alone and in a pesticide formulation) on alfalfa (lucerne) leaves at a range of temperatures and relative humidities and when using leaves collected in different summer months. Kleaf-air values were measured using a solid-phase fugacity meter. A portion of the leaves were also used for foliar penetration experiments. Kleaf-air values for chlorpyrifos as an active ingredient alone decreased with temperature, while the effects of temperature on chlorpyrifos in the formulation were negligible. No correlations between Kleaf-air values and relative humidity were observed. Foliar penetration increased with temperature for chlorpyrifos both as an active ingredient and in the formulation. Increasing foliar penetration with temperature is attributed to increasing diffusion into inner leaf layers. Both volatilization and foliar penetration affect the measured Kleaf-air values, so understanding the link between these processes is necessary to predict Kleaf-air values. The leaf collection date had a substantial effect on the measured Kleaf-air values, highlighting the need for a better understanding of the role of leaf properties on Kleaf-air.


Subject(s)
Chlorpyrifos , Insecticides , Pesticides , Humidity , Insecticides/analysis , Pesticides/analysis , Plant Leaves/chemistry , Temperature
2.
J Chromatogr A ; 1627: 461414, 2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32823112

ABSTRACT

Various techniques have been evaluated for the extraction and cleanup of pesticides from environmental samples. In this work, a Selective Pressurized Liquid Extraction (SPLE) method for pesticides was developed using a Thermo Fisher Scientific Accelerated Solvent Extraction (ASE) system. This instrument was compared to the newly introduced (2017) extraction instrument, the Energized Dispersive Guided Extraction (EDGE) system, which combines Pressurized Liquid Extraction (PLE) and dispersive Solid Phase Extraction (dSPE). We first optimized the SPLE method using the ASE instrument for pesticide extraction from alfalfa leaves using layers of Florisil and graphitized carbon black (GCB) downstream of the leaf homogenate in the extraction cell (Layered ASE method). We then compared results obtained for alfalfa and citrus leaves with the Layered ASE method to those from a method in which the leaf homogenate and sorbents were mixed (Mixed ASE method) and to similar methods modified for use with EDGE (Layered EDGE and Mixed EDGE methods). The ASE and EDGE methods led to clear, colorless extracts with low residual lipid weight. No significant differences in residual lipid masses were observed between the methods. The UV-Vis spectra showed that Florisil removed a significant quantity of the light-absorbing chemicals, but that GCB was required to produce colorless extracts. Recoveries of spiked analytes into leaf homogenates were generally similar among methods, but in several cases, significantly higher recoveries were observed in ASE extracts. Nonetheless, no significant differences were observed among pesticide concentrations in field samples when calculated with the isotope dilution method in which labelled surrogates were added to samples before extraction. The extraction time with the ASE methods was ~45 minutes, which was ~4.5 times longer than with the EDGE methods. The EDGE methods used ~10 mL more solvent than the ASE methods. Based on these results, the EDGE is an acceptable extraction instrument and, for most compounds, the EDGE had a similar extraction efficiency to the ASE methods.


Subject(s)
Chemistry Techniques, Analytical/methods , Pesticides/analysis , Plant Leaves/chemistry , Solvents/chemistry , Lipids/chemistry , Medicago sativa/chemistry , Pesticide Residues/analysis , Plant Extracts/chemistry , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...