Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 190, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347013

ABSTRACT

Wind wave observations in shallow coastal waters are essential for calibrating, validating, and improving numerical wave models to predict sediment transport, shoreline change, and coastal hazards such as beach erosion and oceanic inundation. Although ocean buoys and satellites provide near-global coverage of deep-water wave conditions, shallow-water wave observations remain sparse and often inaccessible. Nearshore wave conditions may vary considerably alongshore due to coastline orientation and shape, bathymetry and islands. We present a growing dataset of in-situ wave buoy observations from shallow waters (<35 m) in southeast Australia that comprises over 7,000 days of measurements at 20 locations. The moored buoys measured wave conditions continuously for several months to multiple years, capturing ambient and storm conditions in diverse settings, including coastal hazard risk sites. The dataset includes tabulated time series of spectral and time-domain parameters describing wave height, period and direction at half-hourly temporal resolution. Buoy displacement and wave spectra data are also available for advanced applications. Summary plots and tables describing wave conditions measured at each location are provided.

2.
Sci Rep ; 8(1): 7065, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29728624

ABSTRACT

Broad scale assessments of impacts associated with sea level rise have mainly been undertaken using ocean water level data from tide gauges located in harbours and ports assuming that these can be applied directly in mapping inundation throughout estuaries. On many coasts, however, exposure to sea level rise comes about through inundation adjacent to rivers and estuaries, in many instances far from the ocean. In this study, we examine the potential impacts of sea level rise within the diverse estuaries of South East Australia. We use an extensive and long-term water level data set, which show that water levels within the different types of estuaries vary from ocean water levels. We map potential inundation scenarios for each estuary using an approach which improves on the commonly used bath tub method by allowing for variation in tidal processes both between and along estuaries. We identify considerable exposure to future sea level rise, and variable suitability of the bath tub method within different estuaries. Exposure is particularly high around tidal lake systems, where reduced tidal ranges have allowed development to occur in relative proximity to present sea level, and around larger coastal rivers, which feature extensive low-lying plains exposed to potential inundation.

3.
Sci Rep ; 7(1): 6033, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28729733

ABSTRACT

Extratropical cyclones (ETCs) are the primary driver of large-scale episodic beach erosion along coastlines in temperate regions. However, key drivers of the magnitude and regional variability in rapid morphological changes caused by ETCs at the coast remain poorly understood. Here we analyze an unprecedented dataset of high-resolution regional-scale morphological response to an ETC that impacted southeast Australia, and evaluate the new observations within the context of an existing long-term coastal monitoring program. This ETC was characterized by moderate intensity (for this regional setting) deepwater wave heights, but an anomalous wave direction approximately 45 degrees more counter-clockwise than average. The magnitude of measured beach volume change was the largest in four decades at the long-term monitoring site and, at the regional scale, commensurate with that observed due to extreme North Atlantic hurricanes. Spatial variability in morphological response across the study region was predominantly controlled by alongshore gradients in storm wave energy flux and local coastline alignment relative to storm wave direction. We attribute the severity of coastal erosion observed due to this ETC primarily to its anomalous wave direction, and call for greater research on the impacts of changing storm wave directionality in addition to projected future changes in wave heights.

SELECTION OF CITATIONS
SEARCH DETAIL
...