Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 16(2): 88-95, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15681167

ABSTRACT

Expression profiling has previously revealed that acute exposure to the common foodborne mycotoxin deoxynivalenol (DON) induces a large number of immediate early genes in murine lymphoid tissues that potentially affect immune function. The purpose of this study was to test the hypothesis that consumption of (n-3) polyunsaturated fatty acids (PUFAs) found in fish oil interferes with DON-induced immediate early gene expression. Mice were fed AIN-93G diet containing 1% corn oil (CO) plus 6% oleic acid (control) or a diet containing 1% CO, 2% fish oil enriched in the (n-3)-PUFAs docosahexaenoic and eicosapentaenoic acid and 4% oleic acid. After 12 weeks, the mice were gavaged orally with 25 mg/kg DON and the kinetics of immediate early gene expression in spleen monitored over 8 h by real-time polymerase chain reaction (PCR). Deoxynivalenol was found to readily induce expression of cytokines (IL-1alpha, IL-1beta, and IL-6 and IL-11), chemokines (MCP-1, MCP-3, CINC-1 and MIP-2), components of the activator protein-1 (AP-1) transcription factor complex (c-Fos, Fra-2, c-Jun and JunB), as well as two hydrolases (MKP1, CnAbeta). Expression of these genes was transient, peaking within 2-4 h and declining thereafter, with the single exception being IL-11 that was elevated at 8 h. (n-3)-PUFA consumption significantly suppressed DON-induced expression of IL-1alpha, IL-6, IL-11, MCP-1, MCP-3, MIP-2 and Fra-2 at 8 h. In contrast, mice fed (n-3)-PUFA exhibited significant increases in MKP1 and CnAbeta expression. Taken together, these data suggest that dietary supplementation with (n-3)-PUFAs prematurely truncated cytokine, chemokine and transcription factor expression responses to DON that may impact its previously described capacity to disrupt immune function including immunoglobulin A (IgA) production. Since expression of many of these genes has been linked to mitogen-activated protein kinase (MAPK) activation, enhanced expression of MKP1, a negative MAPK regulator in (n-3)-PUFA-fed mice might contribute to this suppression.


Subject(s)
Dietary Fats, Unsaturated/administration & dosage , Fatty Acids, Omega-3/administration & dosage , Gene Expression/drug effects , Genes, Immediate-Early/genetics , Spleen/metabolism , Trichothecenes/pharmacology , Animals , Chemokines/genetics , Corn Oil/administration & dosage , Cytokines/genetics , Kinetics , Male , Mice , Oleic Acid/administration & dosage , Polymerase Chain Reaction , Transcription Factor AP-1/genetics
2.
J Toxicol Environ Health A ; 67(18): 1423-41, 2004 Sep 24.
Article in English | MEDLINE | ID: mdl-15371230

ABSTRACT

Exposure to the trichothecene mycotoxin deoxynivalenol (DON) alters immune functions in vitro and in vivo. To gain further insight into DON's immunotoxic effects, microarrays were used to determine how acute exposure to this mycotoxin modulates gene expression profiles in murine spleen. B6C3F1 mice were treated orally with 25mg/kg body weight DON, and 2h later spleens were collected for macroarray analysis. Following normalization using a local linear regression model, expression of 116 out of 1176 genes was significantly altered compared to average expression levels in all treatment groups. When genes were arranged into an ontology tree to facilitate comparison of expression profiles between treatment groups, DON was found primarily to modulate genes associated with immunity, inflammation, and chemotaxis. Real-time polymerase chain reaction was used to confirm modulation for selected genes. DON was found to induce the cytokines interleukin (IL)-1alpha, IL-1beta, IL-6 and IL-11. In analogous fashion, DON upregulated expression of the chemokines macrophage inhibitory protein-2 (MIP-2), cytokine-induced chemoattractant protein-1 (CINC-1), monocyte chemoattractant protein (MCP)-1, MCP-3, and cytokine-responsive gene-2 (CRG-2). c-Fos, Fra-, c-Jun, and JunB, components of the activator protein-1 (AP-1) transcription factor complex, were induced by DON as well as another transcription factor, NR4A1. Four hydrolases were found to be upregulated by DON, including mitogen-activated protein kinase phosphatase 1 (MKP1), catalytic subunit beta isoform (CnAbeta), protein tyrosine phosphatase receptor type J (Ptprj), and protein tyrosine phosphatase nonreceptor type 8 (Ptpn8), whereas three other hydrolases, microsomal epoxide hydrolase (Eph) 1, histidine triad nucleotide binding protein (Hint), and proteosome subunit beta type 8 (Psmb8) were significantly decreased by the toxin. Finally, cysteine-rich protein 61 (CRP61) and heat-shock protein 40 (Hsp40), genes associated with signaling, were increased, while Jun kinase 2 (JNK2) was decreased. Taken together, data suggest that DON upregulated the expression of multiple immediate early genes, many of which are likely to contribute to the complex immunological effects reported for this and other trichothecenes.


Subject(s)
Gene Expression Profiling , Genes, Immediate-Early/drug effects , Oligonucleotide Array Sequence Analysis , Spleen/drug effects , Trichothecenes/toxicity , Animals , Chemokines/genetics , Chemokines/immunology , Chemotaxis/drug effects , Chemotaxis/genetics , Chemotaxis/immunology , Cytokines/drug effects , Cytokines/genetics , Cytokines/immunology , Drug Evaluation, Preclinical , Gene Expression Profiling/methods , Genes, Immediate-Early/genetics , Genes, Immediate-Early/immunology , Hydrolases/drug effects , Hydrolases/genetics , Hydrolases/immunology , Inflammation , Linear Models , Mice , Mice, Inbred Strains , Oligonucleotide Array Sequence Analysis/methods , Phylogeny , Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/immunology , Spleen/immunology , Toxicogenetics , Transcription Factors/drug effects , Transcription Factors/genetics , Transcription Factors/immunology , Trichothecenes/genetics , Trichothecenes/immunology , Up-Regulation/drug effects , Up-Regulation/genetics , Up-Regulation/immunology
3.
J Toxicol Environ Health A ; 67(12): 911-28, 2004 Jun 25.
Article in English | MEDLINE | ID: mdl-15205035

ABSTRACT

Nontoxic doses of endotoxin (lipopolysaccharide, LPS) enhance the hepatotoxicity of many xenobiotic agents, including allyl alcohol. Systemic LPS exposure induces an inflammatory response, including accumulation and activation of neutrophils (PMNs) in the liver. The hypothesis that PMNs play a causal role in LPS enhancement of allyl alcohol hepatotoxicity was tested. Rats were pretreated with an anti-neutrophil antibody (anti-PMN immunoglobulin [lg]) to deplete circulating PMNs. Subsequently, they were given LPS or its vehicle, and 2 h later allyl alcohol was administered. The numbers of circulating and hepatic PMNs were decreased in rats pretreated with anti-PMN lg, and liver toxicity induced by cotreatment with LPS and allyl alcohol was attenuated. Treatment with allyl alcohol diminishes the concentration of reduced glutathione (GSH) in liver, raising the possibility that antioxidant defense was compromised in these livers. Accordingly, the hypothesis was tested that allyl alcohol-induced reduction in GSH renders liver cells more sensitive to reactive oxygen species produced by activated PMNs. Isolated hepatocytes were incubated with allyl alcohol in the presence and absence of isolated PMNs stimulated to produce reactive oxygen species. Allyl alcohol produced a concentration-dependent increase in ALT release from hepatocytes. Activated PMNs produced a statistically significant increase in cell killing that was so small it is unlikely to explain the role of PMNs in liver injury in vivo. To test the hypothesis that proteases released from activated PMNs increase the sensitivity of liver cells to allyl alcohol, isolated hepatocytes were incubated with medium from PMNs activated to undergo degranulation. Protease-containing medium from PMNs did not affect allyl alcohol-induced release of ALT from hepatocytes. Taken together, these results indicate that PMNs play a role in the potentiation of allyl alcohol toxicity by LPS. It is unlikely that PMNs contribute to this injury through release of reactive oxygen species or proteases, and other mechanisms must be involved.


Subject(s)
Chemical and Drug Induced Liver Injury/immunology , Endotoxins/toxicity , Environmental Pollutants/toxicity , Neutrophils/drug effects , Propanols/toxicity , Animals , Chemical and Drug Induced Liver Injury/etiology , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Hepatocytes/enzymology , Lipopolysaccharides/toxicity , Male , Neutrophils/physiology , Rats , Rats, Sprague-Dawley
4.
Toxicol Sci ; 69(2): 470-81, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12377996

ABSTRACT

Noninjurious doses of bacterial endotoxin (lipopolysaccharide; LPS) enhance allyl alcohol-induced liver damage in rats in a Kupffer cell (KC)-dependent fashion. To investigate the mechanism by which KCs contribute to liver injury in this model, isolated KCs and hepatocytes (HCs) were cocultured. Addition of LPS to the cocultured cells did not enhance allyl alcohol-induced cytotoxicity. In addition, recirculating perfusion of isolated livers from naïve rats with LPS for 2 h did not significantly enhance allyl alcohol-induced toxicity as measured by release of alanine aminotransferase (ALT). These results suggest an extrahepatic factor is required for LPS potentiation of allyl alcohol hepatotoxicity. To examine whether the coagulation cascade contributes to injury in this model, rats were given either warfarin at 42 and 18 h before LPS, or heparin at 1 h before LPS, and were treated with allyl alcohol 2 h after LPS. Warfarin and heparin each significantly blocked the decrease in plasma fibrinogen levels and attenuated the increase in plasma ALT activity in rats treated with LPS and allyl alcohol. To assess the role of thrombin in this injury, isolated livers from rats pretreated with LPS were perfused with thrombin or vehicle and allyl alcohol. Though LPS pretreatment enhanced the toxicity of allyl alcohol compared with livers from naïve rats, perfusion with thrombin did not increase sensitivity to allyl alcohol. In summary, LPS augments the hepatotoxicity of allyl alcohol through a mechanism involving extrahepatic factors, one of which may be a component of the coagulation cascade.


Subject(s)
Chemical and Drug Induced Liver Injury/pathology , Chemokines, CXC , Endotoxins/toxicity , Propanols/toxicity , Animals , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Cell Separation , Chemokines/biosynthesis , Chemokines/genetics , Chemotactic Factors/biosynthesis , Chemotactic Factors/genetics , Coculture Techniques , Cyclooxygenase 2 , Fibrinogen/metabolism , Heparin/pharmacology , Hepatocytes/drug effects , Intercellular Signaling Peptides and Proteins/biosynthesis , Intercellular Signaling Peptides and Proteins/genetics , Isoenzymes/biosynthesis , Isoenzymes/genetics , Kupffer Cells/drug effects , Lipopolysaccharides/toxicity , Liver Function Tests , Male , Neutrophil Infiltration/drug effects , Perfusion , Prostaglandin-Endoperoxide Synthases/biosynthesis , Prostaglandin-Endoperoxide Synthases/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Thrombin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...