Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 904: 166231, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37586530

ABSTRACT

Long-term (2010-19) water-quality monitoring on the Colorado River downstream from Moab Utah indicated the persistent presence of Bioactive Chemicals (BC), such as pesticides and pharmaceuticals. This stream reach near Canyonlands National Park provides critical habitat for federally endangered species. The Moab wastewater treatment plant (WWTP) outfall discharges to the Colorado River and is the nearest potential point-source to this reach. The original WWTP was replaced in 2018. In 2016-19, a study was completed to determine if the new plant reduced BC input to the Colorado River at, and downstream from, the outfall. Water samples were collected before and after the plant replacement at sites upstream and downstream from the outfall. Samples were analyzed for as many as 243 pesticides, 109 pharmaceuticals, 20 hormones, 51 wastewater indicator chemicals, 20 metals, and 8 nutrients. BC concentrations, hazard quotients (HQs), and exposure activity ratios (EARs) were used to identify and prioritize contaminants for their potential to have adverse biological effects on the health of native and endangered wildlife. There were 22 BC with HQs >1, mostly metals and hormones; and 23 BC with EARs >0.1, mostly hormones and pharmaceuticals. Most high HQs or EARs were associated with samples collected at the WWTP outfall site prior to its replacement. Discharge from the new plant had reduced concentrations of nutrients, hormones, pharmaceuticals, and other BC. For example, all 16 of the hormones detected at the WWTP outfall site had maximum concentrations in samples collected prior to the WWTP replacement. The WWTP replacement had less effect on instream concentrations of metals and pesticides, BC whose sources are less directly tied to domestic wastewater. Study results indicate that improved WWTP technology can create substantial reductions in concentrations of non-regulated BC such as pharmaceuticals, in addition to regulated contaminants such as nutrients.


Subject(s)
Pesticides , Water Pollutants, Chemical , Water Purification , Wastewater , Colorado , Utah , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water , Pesticides/analysis , Hormones , Pharmaceutical Preparations
2.
Environ Pollut ; 289: 117928, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34426200

ABSTRACT

Previous studies have detected numerous organic contaminants and in vitro bioactivities in surface water from the South Platte River near Denver, Colorado, USA. To evaluate the temporal and spatial distribution of selected contaminants of emerging concern, water samples were collected throughout 2018 and 2019 at 11 sites within the S. Platte River and surrounding tributaries with varying proximities to a major wastewater treatment plant (WWTP). Water samples were analyzed for pharmaceuticals, pesticides, steroid hormones, and wastewater indicators and screened for in vitro biological activities. Multiplexed, in vitro assays that simultaneously screen for agonistic activity against 24 human nuclear receptors detected estrogen receptor (ER), peroxisome proliferator activated receptor-gamma (PPARγ), and glucocorticoid receptor (GR) bioactivities in water samples near the WWTP outflow. Targeted in vitro bioassays assessing ER, GR, and PPARγ agonism corroborated bioactivities for ER (up to 55 ± 9.7 ng/L 17ß-estradiol equivalents) and GR (up to 156 ± 28 ng/L dexamethasone equivalents), while PPARγ activity was not confirmed. To evaluate the potential in vivo significance of the bioactive contaminants, sexually-mature fathead minnows were caged at six locations upstream and downstream of the WWTP for 5 days after which targeted gene expression analyses were performed. Significant up-regulation of male hepatic vitellogenin was observed at sites with corresponding in vitro ER activity. No site-related differences in GR-related transcript abundance were detected in female adipose or male livers, suggesting observed environmental concentrations of GR-active contaminants do not induce a detectable in vivo response. In line with the lack of detectable targeted in vitro PPARÉ£ activity, there were no significant effects on PPARÉ£-related gene expression. Although the chemicals responsible for GR and PPAR-mediated bioactivities are unknown, results from the present study provide insights into the significance (or lack thereof) of these bioactivities relative to short-term in situ fish exposures.


Subject(s)
Water Pollutants, Chemical , Water Purification , Animals , Colorado , Environmental Monitoring , Female , Humans , Male , Rivers , Wastewater , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 55(2): 974-984, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33373525

ABSTRACT

Monitoring of the Colorado River near the Moab, Utah, wastewater treatment plant (WWTP) outflow has detected pharmaceuticals, hormones, and estrogen-receptor (ER)-, glucocorticoid receptor (GR)-, and peroxisome proliferator-activated receptor-gamma (PPARγ)-mediated biological activities. The aim of the present multi-year study was to assess effects of a WWTP replacement on bioactive chemical (BC) concentrations. Water samples were collected bimonthly, pre- and post-replacement, at 11 sites along the Colorado River upstream and downstream of the WWTP and analyzed for in vitro bioactivities (e.g., agonism of ER, GR, and PPARγ) and BC concentrations; fathead minnows were cage deployed pre- and post-replacement at sites with varying proximities to the WWTP. Before the WWTP replacement, in vitro ER (24 ng 17ß-estradiol equivalents/L)-, GR (60 ng dexamethasone equivalents/L)-, and PPARγ-mediated activities were detected at the WWTP outflow but diminished downstream. In March 2018, the WWTP effluent was acutely toxic to the fish, likely due to elevated ammonia concentrations. Following the WWTP replacement, ER, GR, and PPARγ bioactivities were reduced by approximately 60-79%, no toxicity was observed in caged fish, and there were marked decreases in concentrations of many BCs. Results suggest that replacement of the Moab WWTP achieved a significant reduction in BC concentrations to the Colorado River.


Subject(s)
Water Pollutants, Chemical , Water Purification , Animals , Colorado , Environmental Monitoring , Utah , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...