Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 14(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38275528

ABSTRACT

Whereas traditional histology and light microscopy require multiple steps of formalin fixation, paraffin embedding, and sectioning to generate images for pathologic diagnosis, Microscopy using Ultraviolet Surface Excitation (MUSE) operates through UV excitation on the cut surface of tissue, generating images of high resolution without the need to fix or section tissue and allowing for potential use for downstream molecular tests. Here, we present the first study of the use and suitability of MUSE microscopy for neuropathological samples. MUSE images were generated from surgical biopsy samples of primary and metastatic brain tumor biopsy samples (n = 27), and blinded assessments of diagnoses, tumor grades, and cellular features were compared to corresponding hematoxylin and eosin (H&E) images. A set of MUSE-treated samples subsequently underwent exome and targeted sequencing, and quality metrics were compared to those from fresh frozen specimens. Diagnostic accuracy was relatively high, and DNA and RNA integrity appeared to be preserved for this cohort. This suggests that MUSE may be a reliable method of generating high-quality diagnostic-grade histologic images for neuropathology on a rapid and sample-sparing basis and for subsequent molecular analysis of DNA and RNA.

2.
Nat Biomed Eng ; 1(12): 957-966, 2017 12.
Article in English | MEDLINE | ID: mdl-31015706

ABSTRACT

Histological examination of tissues is central to the diagnosis and management of neoplasms and many other diseases and is a foundational technique for preclinical and basic research. However, commonly used bright-field microscopy requires prior preparation of micrometre-thick tissue sections mounted on glass slides-a process that can require hours or days, contributes to cost and delays access to critical information. Here, we introduce a simple, non-destructive slide-free technique that, within minutes, provides high-resolution diagnostic histological images resembling those obtained from conventional haematoxylin and eosin histology. The approach, which we named microscopy with ultraviolet surface excitation (MUSE), can also generate shape and colour-contrast information. MUSE relies on ~280 nm ultraviolet light to restrict the excitation of conventional fluorescent stains to tissue surfaces and it has no significant effects on downstream molecular assays (including fluorescence in situ hybridization and RNA sequencing). MUSE promises to improve the speed and efficiency of patient care in both state-of-the-art and low-resource settings and to provide opportunities for rapid histology in research.


Subject(s)
Histological Techniques/instrumentation , Histological Techniques/methods , Microscopy, Ultraviolet/instrumentation , Microscopy, Ultraviolet/methods , Pathology/instrumentation , Pathology/methods , Animals , Carcinoma/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Molecular Diagnostic Techniques , Reproducibility of Results , Ultraviolet Rays
3.
Genome Announc ; 4(5)2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27635000

ABSTRACT

We present here the draft genome sequences for nine strains of Vibrio (V. cyclitrophicus, V. splendidus, V. tasmaniensis, and three unidentified) and one Shewanella strain. Strains were isolated from red (Haliotis rufescens) and white (Haliotis sorenseni) abalone, with and without exposure to "Candidatus Xenohaliotis californiensis," the causative agent of abalone withering syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL
...