Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(8): 3420-3430, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36796032

ABSTRACT

The trinuclear high-spin iron(III) complex [Fe3Cl3(saltagBr)(py)6]ClO4 {H5saltagBr = 1,2,3-tris[(5-bromo-salicylidene)amino]guanidine} was synthesized and characterized by several experimental and theoretical methods. The iron(III) complex exhibits molecular 3-fold symmetry imposed by the rigid ligand backbone and crystallizes in trigonal space group P3̅ with the complex cation lying on a crystallographic C3 axis. The high-spin states (S = 5/2) of the individual iron(III) ions were determined by Mößbauer spectroscopy and confirmed by CASSCF/CASPT2 ab initio calculations. Magnetic measurements show an antiferromagnetic exchange between the iron(III) ions leading to a geometrically spin-frustrated ground state. This was complemented by high-field magnetization experiments up to 60 T, which confirm the isotropic nature of the magnetic exchange and negligible single-ion anisotropy for the iron(III) ions. Muon-spin relaxation experiments were performed and further prove the isotropic nature of the coupled spin ground state and the presence of isolated paramagnetic molecular systems with negligible intermolecular interactions down to 20 mK. Broken-symmetry density functional theory calculations are consistent with the antiferromagnetic exchange between the iron(III) ions within the presented trinuclear high-spin iron(III) complex. Ab initio calculations further support the absence of appreciable magnetic anisotropy (D = 0.086, and E = 0.010 cm-1) and the absence of significant contributions from antisymmetric exchange, as the two Kramers doublets are virtually degenerate (ΔE = 0.005 cm-1). Therefore, this trinuclear high-spin iron(III) complex should be an ideal candidate for further investigations of spin-electric effects arising exclusively from the spin chirality of a geometrically frustrated S = 1/2 spin ground state of the molecular system.

2.
Inorg Chem ; 61(47): 18883-18898, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36377823

ABSTRACT

The half-sandwich complex [Cp'Fe{N(dipp)(SiMe3)}] (Fe-dipp; Cp' = 1,2,4-tri-tert-butylcyclopentadienyl and dipp = 2,6-diisopropylphenyl) and the mixed metallocene [Cp'Fe{(η5-C6H3iPr2)═N(SiMe3)}] (Fe-chd) formed in the reaction between [{Cp'Fe(µ-I)}2] and [Li{N(dipp)(SiMe3)}]2 were characterized by NMR spectroscopy and X-ray diffraction analysis. Fe-dipp complements the series of low-coordinate, quasi-linear iron amido half-sandwich complexes [Cp'Fe{N(tBu)(SiMe3)}] (Fe-tBu) and [Cp'Fe{N(SiMe3)2}] (Fe-tms) reported earlier, and all three compounds were characterized in the solid state by zero-field 57Fe Mössbauer spectroscopy and magnetic susceptibility measurements, confirming their S = 2 electronic ground state. Moreover, the Mössbauer absorption spectra reveal slow paramagnetic relaxation at low temperatures with large internal magnetic hyperfine fields of Bhf = 96.4 T (Fe-dipp, 20 K), Bhf = 101.3 T (Fe-tBu, 15 K), and Bhf = 96.9 T (Fe-tms, 20 K). The magnetic measurements further confirm that the presence of significant axial zero-field splitting and slow relaxation of magnetization is detected, which is revealed even in the absence of a static magnetic field in the case of Fe-tBu. Supplementary ab initio and density functional theory calculations were performed and support the experimental data.

3.
Angew Chem Int Ed Engl ; 60(16): 8832-8838, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33511751

ABSTRACT

A cobalt(II)-based spin triangle shows a significant spin-electric coupling. [Co3 (pytag)(py)6 Cl3 ]ClO4 ⋅3 py crystallizes in the acentric monoclinic space group P21 . The intra-triangle antiferromagnetic interaction, of the order of ca. -15 cm-1 (H=-JSa Sb ), leads to spin frustration. The two expected energy-degenerate ground doublets are, however, separated by a few wavenumbers, as a consequence of magnetic anisotropy and deviations from threefold symmetry. The Co3  planes of symmetry-related molecules are almost parallel, allowing for the determination of the spin-electric properties of single crystals by EFM-ESR spectroscopy. The spin-electric effect detected when the electric field is applied in the Co3  plane was revealed by a shift in the resonance field. It was quantified as ΔgE /E=0.11×10-9  m V-1 , which in terms of frequency corresponds to approximately 0.3 Hz m V-1 . This value is comparable to what was determined for a Cu3  triangle despite the antiferromagnetic interaction being 20 times larger for the latter.

4.
Phys Rev Lett ; 122(3): 037202, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30735403

ABSTRACT

Coherent control of individual molecular spins in nanodevices is a pivotal prerequisite for fulfilling the potential promised by molecular spintronics. By applying electric field pulses during time-resolved electron spin resonance measurements, we measure the sensitivity of the spin in several antiferromagnetic molecular nanomagnets to external electric fields. We find a linear electric field dependence of the spin states in Cr_{7}Mn, an antiferromagnetic ring with a ground-state spin of S=1, and in a frustrated Cu_{3} triangle, both with coefficients of about 2 rad s^{-1}/V m^{-1}. Conversely, the antiferromagnetic ring Cr_{7}Ni, isomorphic with Cr_{7}Mn but with S=1/2, does not exhibit a detectable effect. We propose that the spin-electric field coupling may be used for selectively controlling individual molecules embedded in nanodevices.

5.
Chem Commun (Camb) ; 54(92): 12934-12937, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30302454

ABSTRACT

The trinuclear copper(ii) complex [Cu3(saltag)(py)6]ClO4 (H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine) was synthesized and characterized by experimental as well as theoretical methods. This complex exhibits a strong antiferromagnetic coupling (J = -298 cm-1) between the copper(ii) ions, mediated by the N-N diazine bridges of the tritopic ligand, leading to a spin-frustrated system. This compound shows a T2 coherence time of 340 ns in frozen pyridine solution, which extends to 591 ns by changing the solvent to pyridine-d5. Hence, the presented compound is a promising candidate as a building block for molecular spintronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...