Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 16577, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789046

ABSTRACT

The Omicron subvariants of SARS-CoV-2 have multiple mutations in the S-proteins and show high transmissibility. We previously reported that tea catechin (-)-epigallocatechin gallate (EGCG) and its derivatives including theaflavin-3,3'-di-O-digallate (TFDG) strongly inactivated the conventional SARS-CoV-2 by binding to the receptor binding domain (RBD) of the S-protein. Here we show that Omicron subvariants were effectively inactivated by green tea, Matcha, and black tea. EGCG and TFDG strongly suppressed infectivity of BA.1 and XE subvariants, while effect on BA.2.75 was weaker. Neutralization assay showed that EGCG and TFDG inhibited interaction between BA.1 RBD and ACE2. In silico analyses suggested that N460K, G446S and F490S mutations in RBDs crucially influenced the binding of EGCG/TFDG to the RBDs. Healthy volunteers consumed a candy containing green tea or black tea, and saliva collected from them immediately after the candy consumption significantly decreased BA.1 virus infectivity in vitro. These results indicate specific amino acid substitutions in RBDs that crucially influence the binding of EGCG/TFDG to the RBDs and different susceptibility of each Omicron subvariant to EGCG/TFDG. The study may suggest molecular basis for potential usefulness of these compounds in suppression of mutant viruses that could emerge in the future and cause next pandemic.


Subject(s)
COVID-19 , Camellia sinensis , Catechin , Humans , SARS-CoV-2/metabolism , Tea/chemistry , Camellia sinensis/metabolism
2.
Bioengineering (Basel) ; 10(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37760169

ABSTRACT

Continuing caution is required against the potential emergence of SARS-CoV-2 novel mutants that could pose the next global health and socioeconomical threats. If virus in saliva can be inactivated by a beverage, such a beverage may be useful because the saliva of infected persons is the major origin of droplets and aerosols that mediate human-to-human viral transmission. We previously reported that SARS-CoV-2 was significantly inactivated by treatment in vitro with tea including green tea and black tea. Catechins and its derived compounds galloylated theaflavins (gTFs) bound to the receptor-binding domain (RBD) of the S-protein and blocked interaction between RBD and ACE2. Black tea is often consumed with sugar, milk, lemon juice, etc., and it remains unclarified whether these ingredients may influence the anti-SARS-CoV-2 effect of black tea. Here, we examined the effect of black tea on Omicron subvariants in the presence of these ingredients. The infectivity of Omicron subvariants was decreased to 1/100 or lower after treatment with black tea for 10 s. One or two teaspoons of milk (4~8 mL) completely blocked the anti-viral effect of a cup of tea (125 mL), whereas an addition of sugar or lemon juice failed to do so. The suppressive effect was dose-dependently exerted by milk casein but not whey proteins. gTFs were coprecipitated with casein after acidification of milk-supplemented black tea, strongly suggesting the binding of gTFs to casein. The present study demonstrates for the first time that an addition of milk cancelled the anti-SARS-CoV-2 effect of black tea due to binding of casein to gTFs.

3.
Biomolecules ; 12(9)2022 08 29.
Article in English | MEDLINE | ID: mdl-36139034

ABSTRACT

Reducing the health hazards caused by air pollution is a global challenge and is included in the Sustainable Development Goals. Air pollutants, such as PM2.5, induce respiratory and cardiovascular disorders by causing various inflammatory responses via oxidative stress. Catechins and polyphenols, which are components of green tea, have various protective effects, owing to their antioxidant ability. The main catechin in green tea, epigallocatechin gallate (EGCG), is potentially effective against respiratory diseases, such as idiopathic pulmonary fibrosis and asthma, but its effectiveness against air-pollution-dependent lung injury has not yet been investigated. In this study, we examined the effect of EGCG on urban aerosol-induced acute lung injury in mice. Urban aerosol treatment caused increases in inflammatory cell counts, protein levels, and inflammatory cytokine expression in the lungs of ICR mice, but pretreatment with EGCG markedly suppressed these responses. Analyses of oxidative stress revealed that urban aerosol exposure enhanced reactive oxygen species (ROS) production and the formation of ROS-activated neutrophil extracellular traps (NETs) in the lungs of mice. However, ROS production and NETs formation were markedly suppressed by pretreating the mice with EGCG. Gallocatechin gallate (GCG), a heat-epimerized form of EGCG, also markedly suppressed urban aerosol-dependent inflammatory responses and ROS production in vivo and in vitro. These findings suggest that EGCG and GCG prevent acute lung injury caused by urban aerosols through their inhibitory effects on ROS production. Thus, we believe that foods and medications containing EGCG or GCG may be candidates to prevent the onset and progression of acute lung injury caused by air pollutants.


Subject(s)
Acute Lung Injury , Air Pollutants , Catechin , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Air Pollutants/toxicity , Animals , Antioxidants/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/therapeutic use , Cytokines , Mice , Mice, Inbred ICR , Particulate Matter/toxicity , Reactive Oxygen Species/metabolism , Respiratory Aerosols and Droplets , Tea
4.
J Agric Food Chem ; 69(49): 14849-14855, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34870993

ABSTRACT

(-)-Epigallocatechin-3-gallate (EGCG) undergoes auto-oxidation at physiological pH and therefore may be poorly absorbed in the intestine. Fructooligosaccharides (FOS), comprising a group of 1-kestose, nystose, and 1F-ß fructofuranosyl-nystose, are fermentable by gut bacteria and converted mainly into lactate. This study was conducted to determine whether dietary FOS may help to increase the plasma concentration of EGCG in rats by preventing it from auto-oxidation. Rats consumed an assigned diet, either a 0.3% (w/w) EGCG diet or an EGCG diet with additional 1, 3, or 5% (w/w) FOS, for 2 weeks. The results showed that the plasma concentration of EGCG was 0.21 ± 0.05 µM for the EGCG alone group, and it was significantly higher at 0.65 ± 0.12 µM for the EGCG plus 5% FOS group. Treatments with FOS resulted in a dose-dependent increase in the cecal level of lactate and brought the cecal pH down, with an accompanying alteration in the abundance of Lactobacillus and Collinsella. Because EGCG concentrations in the cecal digesta of rats fed the FOS-containing diet maintained comparatively high levels, FOS likely contributed to the protection of EGCG from auto-oxidation. In conclusion, FOS reduced the pH of the lumen of the intestine, kept EGCG intact to a certain degree, and consequently allowed EGCG to be taken into the blood circulation from the intestine.


Subject(s)
Catechin , Animals , Catechin/analogs & derivatives , Cecum , Diet , Oligosaccharides , Rats
5.
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208050

ABSTRACT

Potential effects of tea and its constituents on SARS-CoV-2 infection were assessed in vitro. Infectivity of SARS-CoV-2 was decreased to 1/100 to undetectable levels after a treatment with black tea, green tea, roasted green tea, or oolong tea for 1 min. An addition of (-) epigallocatechin gallate (EGCG) significantly inactivated SARS-CoV-2, while the same concentration of theasinensin A (TSA) and galloylated theaflavins including theaflavin 3,3'-di-O-gallate (TFDG) had more remarkable anti-viral activities. EGCG, TSA, and TFDG at 1 mM, 40 µM, and 60 µM, respectively, which are comparable to the concentrations of these compounds in tea beverages, significantly reduced infectivity of the virus, viral RNA replication in cells, and secondary virus production from the cells. EGCG, TSA, and TFDG significantly inhibited interaction between recombinant ACE2 and RBD of S protein. These results suggest potential usefulness of tea in prevention of person-to-person transmission of the novel coronavirus.


Subject(s)
Antiviral Agents/pharmacology , Biflavonoids/chemistry , Catechin/chemistry , Gallic Acid/analogs & derivatives , SARS-CoV-2/physiology , Tea/chemistry , Virus Replication/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/chemistry , Biflavonoids/pharmacology , COVID-19/pathology , COVID-19/virology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , Gallic Acid/chemistry , Gallic Acid/pharmacology , Humans , Protein Interaction Maps/drug effects , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Tea/metabolism , Vero Cells
6.
Pathogens ; 10(6)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201131

ABSTRACT

Saliva plays major roles in the human-to-human transmission of SARS-CoV-2. If the virus in saliva in SARS-CoV-2-infected individuals can be rapidly and efficiently inactivated by a beverage, the ingestion of the beverage may attenuate the spread of virus infection within a population. Recently, we reported that SARS-CoV-2 was significantly inactivated by treatment with black tea, green tea, roasted green tea and oolong tea, as well as their constituents, (-) epigallocatechin gallate (EGCG), theasinensin A (TSA), and galloylated theaflavins. However, it remains unclear to what extent tea inactivates the virus present in saliva, because saliva contains various proteins, nitrogenous products, electrolytes, and so on, which could influence the antivirus effect of tea. Here, we assessed whether tea inactivated the SARS-CoV-2 which was added in human saliva. A virus was added in healthy human saliva in vitro, and after treatment with black tea or green tea, the infectivity of the virus was evaluated by TCID50 assays. The virus titer fell below the detectable level or less than 1/100 after treatment with black tea or green tea for 10 s. The black tea-treated virus less remarkably replicated in cells compared with the untreated virus. These findings suggest the possibility that the ingestion of tea may inactivate SARS-CoV-2 in saliva in infected individuals, although clinical studies are required to determine the intensity and duration of the anti-viral effect of tea in saliva in humans.

7.
J Agric Food Chem ; 53(10): 3995-9, 2005 May 18.
Article in English | MEDLINE | ID: mdl-15884829

ABSTRACT

The mechanism of sediment formation during the storage of green tea beverage was investigated. Green tea extract was separated by Diaion HP-20 column chromatography, and a sediment-formation test was performed. Results showed that at least one compound of the substance causing flock sediment was contained in each of the HP-20 nonadsorbed and adsorbed fractions. From the following fractionations and structure analyses, the substance in the HP-20 adsorbed fraction was determined to be 1-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-beta-D-glucose (strictinin), which is one of the ellagitannins. Strictinin was hydrolyzed to ellagic acid by heat-sterilization processes such as retort sterilization or the ultra-high temperature processing used during the manufacturing of tea beverages. Ellagic acid combined with proteins in the HP-20 nonadsorbed fraction to form an irreversible sediment of green tea beverage; ellagic acid and proteins were confirmed to be present in that sediment. The HP-20 adsorbed fraction contained little strictinin and formed hardly any sediment, suggesting that control of the strictinin content is significant in avoiding sediment formation during the manufacturing process of tea beverages.


Subject(s)
Phenols/analysis , Tea/chemistry , Chemical Phenomena , Chemistry, Physical , Chromatography, High Pressure Liquid , Ellagic Acid/analysis , Ellagic Acid/chemistry , Hot Temperature , Hydrolysis , Phenols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...