Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 49(3): 834-846, 2022 02.
Article in English | MEDLINE | ID: mdl-34486071

ABSTRACT

PURPOSE: Imaging of PARP expression has emerged as valuable strategy for prediction of tumor malignancy. While [18F]PARPi and [18F]FTT are already in clinical translation, both suffer from mainly hepatobiliary clearance hampering their use for detection of abdominal lesions, e.g., liver metastases. Our novel radiotracer [18F]FPyPARP aims to bridge this gap with a higher renal clearance and an easily translatable synthesis route for potential clinical application. METHODS: We developed a less lipophilic variant of [18F]PARPi by exchange of the fluorobenzoyl residue with a fluoronicotinoyl group and automated the radiosyntheses of the three radiotracers. We then conducted a comparative side-by-side study of [18F]PARPi, [18F]FPyPARP, and [18F]FTT in NOD.CB17-Prkdcscid/J mice bearing HCC1937 xenografts to assess xenograft uptake and pharmacokinetics focusing on excretion pathways. RESULTS: Together with decent uptake of all three radiotracers in the xenografts (tumor-to-blood ratios 3.41 ± 0.83, 3.99 ± 0.99, and 2.46 ± 0.35, respectively, for [18F]PARPi, [18F]FPyPARP, and [18F]FTT), a partial shift from hepatobiliary to renal clearance of [18F]FPyPARP was observed, whereas [18F]PARPi and [18F]FTT show almost exclusive hepatobiliary clearance. CONCLUSION: These findings imply that [18F]FPyPARP is an alternative to [18F]PARPi and [18F]FTT for PET imaging of PARP enzymes.


Subject(s)
Liver Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Cell Line, Tumor , Humans , Liver Neoplasms/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Positron-Emission Tomography/methods
2.
J Med Chem ; 64(21): 15690-15701, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34672571

ABSTRACT

Given the clinical potential of poly(ADP-ribose) polymerases (PARP) imaging for the detection and stratification of various cancers, the development of novel PARP imaging probes with improved pharmacological profiles over established PARP imaging agents is warranted. Here, we present a novel 18F-labeled PARP radiotracer based on the clinically superior PARP inhibitor talazoparib. An automated radiosynthesis of [18F]talazoparib (RCY: 13 ± 3.4%; n = 4) was achieved using a "design of experiments" (DoE) optimized copper-mediated radiofluorination reaction. The chiral product was isolated from the reaction mixture using 2D reversed-phase/chiral radio-HPLC (>99% ee). (8S,9R)-[18F]Talazoparib demonstrated PARP binding in HCC1937 cells in vitro and showed an excellent tumor-to-blood ratio in xenograft-bearing mice (10.2 ± 1.5). Additionally, a favorable pharmacological profile in terms of excretion, metabolism, and target engagement was observed. This synthesis of [18F]talazoparib exemplifies how DoE can enable the radiosyntheses of synthetically challenging radiolabeled compounds of high interest to the imaging community.


Subject(s)
Antineoplastic Agents/pharmacology , Automation , Breast Neoplasms/drug therapy , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Fluorine Radioisotopes , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice, Inbred NOD , Molecular Structure , Phthalazines/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/analysis , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...