Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37631074

ABSTRACT

The recently developed compound, tetramethylthiocycloheptyne sulfoximine (TMTHSI), has shown to be a promising strained alkyne for strain-promoted azide-alkyne cycloaddition (SPAAC), metal-free click chemistry. This research explores the properties of TMTHSI-based compounds via three aspects: (1) large-scale production, (2) unique stability in acidic conditions and its subsequent use in peptide synthesis, and (3) the functionalization of antibodies. Here, it is shown that (1) scale-up is achieved on a scale of up to 100 g. (2) TMTHSI is remarkably stable against TFA allowing for the site-specific functionalization of peptides on resin. Finally, (3) the functionalization of an antibody with a model payload is very efficient, with antibody conjugation demonstrating more beneficial features such as a high yield and limited hydrophobicity as compared to other alkyne reagent conjugates. These results illustrate the high potential of TMTHSI for diverse bioconjugation applications, with production already being GMP-compatible and a highly efficient conversion resulting in attractive costs of goods.

2.
ACS Pharmacol Transl Sci ; 4(3): 1136-1148, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34151204

ABSTRACT

Niemann-Pick disease type C1 (NPC1) is a rare genetic cholesterol storage disorder caused by mutations in the NPC1 gene. Mutations in this transmembrane late endosome protein lead to loss of normal cholesterol efflux from late endosomes and lysosomes. It has been shown that broad spectrum histone deacetylase inhibitors (HDACi's) such as Vorinostat correct the cholesterol accumulation phenotype in the majority of NPC1 mutants tested in cultured cells. In order to determine the optimal specificity for HDACi correction of the mutant NPC1s, we screened 76 HDACi's of varying specificity. We tested the ability of these HDACi's to correct the excess accumulation of cholesterol in patient fibroblast cells that homozygously express NPC1 I1061T , the most common mutation. We determined that inhibition of HDACs 1, 2, and 3 is important for correcting the defect, and combined inhibition of all three is needed to achieve the greatest effect, suggesting a need for multiple effects of the HDACi treatments. Identifying the specific HDACs involved in the process of regulating cholesterol trafficking in NPC1 will help to focus the search for more specific druggable targets.

3.
Epilepsia ; 62(1): 269-278, 2021 01.
Article in English | MEDLINE | ID: mdl-33140458

ABSTRACT

OBJECTIVES: The loop diuretic bumetanide has been proposed previously as an adjunct treatment for neonatal seizures because bumetanide is thought to potentiate the action of γ-aminobutyric acid (GABA)ergic drugs such as phenobarbital by preventing abnormal intracellular accumulation of chloride and the subsequent "GABA shift." However, a clinical trial in neonates failed to demonstrate such a synergistic effect of bumetanide, most likely because this drug only poorly penetrates into the brain. This prompted us to develop lipophilic prodrugs of bumetanide, such as the N,N-dimethylaminoethyl ester of bumetanide (DIMAEB), which rapidly enter the brain where they are hydrolyzed by esterases to the parent compound, as demonstrated previously by us in adult rodents. However, it is not known whether esterase activity in neonates is sufficient to hydrolyze ester prodrugs such as DIMAEB. METHODS: In the present study, we examined whether esterases in neonatal serum of healthy term infants are capable of hydrolyzing DIMAEB to bumetanide and whether this activity is different from the serum of adults. Furthermore, to extrapolate the findings to brain tissue, we performed experiments with brain tissue and serum of neonatal and adult rats. RESULTS: Serum from 1- to 2-day-old infants was capable of hydrolyzing DIMAEB to bumetanide at a rate similar to that of serum from adult individuals. Similarly, serum and brain tissue of neonatal rats rapidly hydrolyzed DIMAEB to bumetanide. SIGNIFICANCE: These data provide a prerequisite for further evaluating the potential of bumetanide prodrugs as add-on therapy to phenobarbital and other antiseizure drugs as a new strategy for improving pharmacotherapy of neonatal seizures.


Subject(s)
Brain/enzymology , Bumetanide/metabolism , Esterases , Esters/metabolism , Prodrugs/metabolism , Animals , Animals, Newborn , Brain/metabolism , Female , Humans , Infant, Newborn , Male , Rats , Serum/enzymology , Serum/metabolism
5.
Neuropharmacology ; 143: 186-204, 2018 12.
Article in English | MEDLINE | ID: mdl-30248303

ABSTRACT

Based on the potential role of Na-K-Cl cotransporters (NKCCs) in epileptic seizures, the loop diuretic bumetanide, which blocks the NKCC1 isoforms NKCC1 and NKCC2, has been tested as an adjunct with phenobarbital to suppress seizures. However, because of its physicochemical properties, bumetanide only poorly penetrates through the blood-brain barrier. Thus, concentrations needed to inhibit NKCC1 in hippocampal and neocortical neurons are not reached when using doses (0.1-0.5 mg/kg) in the range of those approved for use as a diuretic in humans. This prompted us to search for a bumetanide derivative that more easily penetrates into the brain. Here we show that bumepamine, a lipophilic benzylamine derivative of bumetanide, exhibits much higher brain penetration than bumetanide and is more potent than the parent drug to potentiate phenobarbital's anticonvulsant effect in two rodent models of chronic difficult-to-treat epilepsy, amygdala kindling in rats and the pilocarpine model in mice. However, bumepamine suppressed NKCC1-dependent giant depolarizing potentials (GDPs) in neonatal rat hippocampal slices much less effectively than bumetanide and did not inhibit GABA-induced Ca2+ transients in the slices, indicating that bumepamine does not inhibit NKCC1. This was substantiated by an oocyte assay, in which bumepamine did not block NKCC1a and NKCC1b after either extra- or intracellular application, whereas bumetanide potently blocked both variants of NKCC1. Experiments with equilibrium dialysis showed high unspecific tissue binding of bumetanide in the brain, which, in addition to its poor brain penetration, further reduces functionally relevant brain concentrations of this drug. These data show that CNS effects of bumetanide previously thought to be mediated by NKCC1 inhibition can also be achieved by a close derivative that does not share this mechanism. Bumepamine has several advantages over bumetanide for CNS targeting, including lower diuretic potency, much higher brain permeability, and higher efficacy to potentiate the anti-seizure effect of phenobarbital.


Subject(s)
Anticonvulsants/pharmacology , Benzylamines/pharmacology , Bumetanide/pharmacology , Phenobarbital/pharmacology , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Anticonvulsants/pharmacokinetics , Benzylamines/chemical synthesis , Benzylamines/chemistry , Benzylamines/pharmacokinetics , Brain/drug effects , Brain/metabolism , Bumetanide/analogs & derivatives , Bumetanide/chemistry , Bumetanide/pharmacokinetics , Drug Evaluation, Preclinical , Drug Synergism , Epilepsy/drug therapy , Epilepsy/metabolism , Female , Mice , Oocytes , Phenobarbital/pharmacokinetics , Rats, Wistar , Seizures/drug therapy , Seizures/metabolism , Sodium Potassium Chloride Symporter Inhibitors/chemistry , Sodium Potassium Chloride Symporter Inhibitors/pharmacokinetics , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Solute Carrier Family 12, Member 2/metabolism , Tissue Culture Techniques , Xenopus laevis
6.
Curr Top Microbiol Immunol ; 398: 419-445, 2016.
Article in English | MEDLINE | ID: mdl-27704271

ABSTRACT

The synthesis of ß-lactams, tetracyclines, and erythromycins as three of the major families of antibiotics will be described herein. We will describe why these antibiotics were the ultimate synthetic targets in the past and how modern synthetic organic chemistry has evolved to address these challenges with new, improved strategies and methods. An additional aspect we would like to highlight here is the fact that these first syntheses had to be particularly creative as most of the modern synthetic methods were not available at that time, or were developed in the course of these syntheses.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/history , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , History, 20th Century , History, 21st Century , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...