Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Astron ; 6(3): 367-380, 2022.
Article in English | MEDLINE | ID: mdl-35399159

ABSTRACT

Exomoons represent a crucial missing puzzle piece in our efforts to understand extrasolar planetary systems. To address this deficiency, we here describe an exomoon survey of 70 cool, giant transiting exoplanet candidates found by Kepler. We identify only one exhibiting a moon-like signal that passes a battery of vetting tests: Kepler-1708 b. We show that Kepler-1708 b is a statistically validated Jupiter-sized planet orbiting a Sun-like quiescent star at 1.6 au. The signal of the exomoon candidate, Kepler-1708 b-i, is a 4.8σ effect and is persistent across different instrumental detrending methods, with a 1% false-positive probability via injection-recovery. Kepler-1708 b-i is ~2.6 Earth radii and is located in an approximately coplanar orbit at ~12 planetary radii from its ~1.6 au Jupiter-sized host. Future observations will be necessary to validate or reject the candidate.

2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34155109

ABSTRACT

Most stars in the Universe are red dwarfs. They outnumber stars like our Sun by a factor of 5 and outlive them by another factor of 20 (population-weighted mean). When combined with recent observations uncovering an abundance of temperate, rocky planets around these diminutive stars, we are faced with an apparent logical contradiction-Why do we not see a red dwarf in our sky? To address this "red sky paradox," we formulate a Bayesian probability function concerning the odds of finding oneself around an F/G/K-spectral type (Sun-like) star. If the development of intelligent life from prebiotic chemistry is a universally rapid and ensured process, the temporal advantage of red dwarfs dissolves, softening the red sky paradox, but exacerbating the classic Fermi paradox. Otherwise, we find that humanity appears to be a 1-in-100 outlier. While this could be random chance (resolution I), we outline three other nonmutually exclusive resolutions (II to IV) that broadly act as filters to attenuate the suitability of red dwarfs for complex life. Future observations may be able to provide support for some of these. Notably, if surveys reveal a paucity of temperate rocky planets around the smallest (and most numerous) red dwarfs, then this would support resolution II. As another example, if future characterization efforts were to find that red dwarf worlds have limited windows for complex life due to stellar evolution, this would support resolution III. Solving this paradox would reveal guidance for the targeting of future remote life sensing experiments and the limits of life in the cosmos.

3.
Proc Natl Acad Sci U S A ; 117(22): 11995-12003, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32424083

ABSTRACT

Life emerged on Earth within the first quintile of its habitable window, but a technological civilization did not blossom until its last. Efforts to infer the rate of abiogenesis, based on its early emergence, are frustrated by the selection effect that if the evolution of intelligence is a slow process, then life's early start may simply be a prerequisite to our existence, rather than useful evidence for optimism. In this work, we interpret the chronology of these two events in a Bayesian framework, extending upon previous work by considering that the evolutionary timescale is itself an unknown that needs to be jointly inferred, rather than fiducially set. We further adopt an objective Bayesian approach, such that our results would be agreed upon even by those using wildly different priors for the rates of abiogenesis and evolution-common points of contention for this problem. It is then shown that the earliest microfossil evidence for life indicates that the rate of abiogenesis is at least 2.8 times more likely to be a typically rapid process, rather than a slow one. This modest limiting Bayes factor rises to 8.7 if we accept the more disputed evidence of 13C-depleted zircon deposits [E. A. Bell, P. Boehnke, T. M. Harrison, W. L. Mao, Proc. Natl. Acad. Sci. U.S.A. 112, 14518-14521 (2015)]. For intelligence evolution, it is found that a rare-intelligence scenario is slightly favored at 3:2 betting odds. Thus, if we reran Earth's clock, one should statistically favor life to frequently reemerge, but intelligence may not be as inevitable.


Subject(s)
Exobiology , Origin of Life , Bayes Theorem , Biological Evolution , Earth, Planet , Exobiology/methods , Exobiology/statistics & numerical data , Intelligence
4.
Astrobiology ; 18(12): 1574-1584, 2018 12.
Article in English | MEDLINE | ID: mdl-30383399

ABSTRACT

Life appears to have emerged relatively quickly on the Earth, a fact sometimes used to justify a high rate of spontaneous abiogenesis (λ) among Earth-like worlds. Conditioned upon a single datum-the time of earliest evidence for life (tobs)-previous Bayesian formalisms for the posterior distribution of λ have demonstrated how inferences are highly sensitive to the priors. Rather than attempt to infer the true λ posterior, we here compute the relative change to λ when new experimental/observational evidence is introduced. By simulating posterior distributions and resulting entropic information gains, we compare three experimental pressures on λ: (1) evidence for an earlier start to life, tobs, (2) constraints on spontaneous abiogenesis from the laboratory, and (3) an exoplanet survey for biosignatures. First, we find that experiments 1 and 2 can only yield lower limits on λ, unlike 3. Second, evidence for an earlier start to life can yield negligible information on λ if [Formula: see text]. Vice versa, experiment 2 is uninformative when [Formula: see text]. While experiment 3 appears the most direct means of measuring λ, we highlight that early starts inform us of the conditions of abiogenesis and that laboratory experiments could succeed in building new life. Altogether, the three experiments are complementary, and we encourage activity in all to solve this grand challenge.


Subject(s)
Exobiology , Extraterrestrial Environment , Origin of Life , Bayes Theorem , Planets
5.
Sci Adv ; 4(10): eaav1784, 2018 10.
Article in English | MEDLINE | ID: mdl-30306135

ABSTRACT

Exomoons are the natural satellites of planets orbiting stars outside our solar system, of which there are currently no confirmed examples. We present new observations of a candidate exomoon associated with Kepler-1625b using the Hubble Space Telescope to validate or refute the moon's presence. We find evidence in favor of the moon hypothesis, based on timing deviations and a flux decrement from the star consistent with a large transiting exomoon. Self-consistent photodynamical modeling suggests that the planet is likely several Jupiter masses, while the exomoon has a mass and radius similar to Neptune. Since our inference is dominated by a single but highly precise Hubble epoch, we advocate for future monitoring of the system to check model predictions and confirm repetition of the moon-like signal.

6.
Nature ; 526(7574): 546-9, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26490620

ABSTRACT

Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf--WD 1145+017--being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.

7.
Astrobiology ; 14(9): 798-835, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25147963

ABSTRACT

The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.


Subject(s)
Evolution, Planetary , Extraterrestrial Environment , Exobiology , Jupiter , Magnetic Phenomena , Models, Theoretical , Origin of Life , Planets , Saturn , Solar Energy , Solar System
8.
Science ; 336(6085): 1133-6, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22582018

ABSTRACT

The Kepler mission is monitoring the brightness of ~150,000 stars, searching for evidence of planetary transits. As part of the Hunt for Exomoons with Kepler (HEK) project, we report a planetary system with two confirmed planets and one candidate planet discovered with the publicly available data for KOI-872. Planet b transits the host star with a period P(b) = 33.6 days and exhibits large transit timing variations indicative of a perturber. Dynamical modeling uniquely detects an outer nontransiting planet c near the 5:3 resonance (P(c) = 57.0 days) with a mass 0.37 times that of Jupiter. Transits of a third planetary candidate are also found: a 1.7-Earth radius super-Earth with a 6.8-day period. Our analysis indicates a system with nearly coplanar and circular orbits, reminiscent of the orderly arrangement within the solar system.

9.
Faraday Discuss ; 147: 369-77; discussion 379-403, 2010.
Article in English | MEDLINE | ID: mdl-21302557

ABSTRACT

Almost 500 extrasolar planets have been found since the discovery of 51 Peg b by Mayor and Queloz in 1995. The traditional field of planetology has thus expanded its frontiers to include planetary environments not represented in our Solar System. We expect that in the next five years space missions (Corot, Kepler and GAIA) or ground-based detection techniques will both increase exponentially the number of new planets discovered and lower the present limit of a approximately 1.9 Earth-mass object [e.g. Mayor et al., Astron. Astrophys., 2009, 507, 487]. While the search for an Earth-twin orbiting a Sun-twin has been one of the major goals pursued by the exoplanet community in the past years, the possibility of sounding the atmospheric composition and structure of an increasing sample of exoplanets with current telescopes has opened new opportunities, unthinkable just a few years ago. As a result, it is possible now not only to determine the orbital characteristics of the new bodies, but moreover to study the exotic environments that lie tens of parsecs away from us. The analysis of the starlight not intercepted by the thin atmospheric limb of its planetary companion (transit spectroscopy), or of the light emitted/reflected by the exoplanet itself, will guide our understanding of the atmospheres and the surfaces of these extrasolar worlds in the next few years. Preliminary results obtained by interpreting current atmospheric observations of transiting gas giants and Neptunes are presented. While the full characterisation of an Earth-twin might requires a technological leap, our understanding of large terrestrial planets (so called super-Earths) orbiting bright, later-type stars is within reach by current space and ground telescopes.

SELECTION OF CITATIONS
SEARCH DETAIL
...