Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 91(18): 11598-11605, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31310094

ABSTRACT

Until recently, the analysis and identification of nuclear fuel pellets in the context of a nuclear forensics investigation have been mainly focused on macroscopic characteristics, such as fuel pellet dimensions, uranium enrichment, and other reactor-specific features. Here, we report microscale isotopic heterogeneity observed in different fuel pellet fragments that were characterized in situ by nanoscale secondary ion mass spectrometry (NanoSIMS). The materials analyzed include fuel fragments obtained as part of the Collaborative Materials Exercise (CMX-4) organized by the Nuclear Forensics International Technical Working Group (ITWG), as well as a fuel pellet fragment from a commercial power reactor. Although the commercial fuel pellet showed a homogeneous 235U/238U ratio across the sample (within analytical error), NanoSIMS imaging of the CMX-4 fuel pellet fragments showed distinct microscale variations in the uranium isotopic composition. The average 235U enrichments were 2.2 and 2.9% for the two samples; however, the measured 235U/238U ratios varied between 0.0081 and 0.035 (0.79-3.3 atom % 235U) and between 0.0090 and 0.045 (0.89-4.3 atom % 235U). The measurement of 236U in one of the CMX-4 samples suggested the use of at least three uranium oxide powders of different isotopic compositions ("source terms") in the production of the pellets. These variations were not detected using the conventional bulk, macroscopic techniques applied to these materials. Our study highlights the importance of characterizing samples on the microscale for heterogeneities that would otherwise be overlooked and demonstrates the potential use of NanoSIMS in guiding further nuclear forensic analysis.

2.
Environ Sci Technol ; 50(13): 6948-56, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27268262

ABSTRACT

Pu(IV) and Pu(V) sorption to goethite was investigated over a concentration range of 10(-15)-10(-5) M at pH 8. Experiments with initial Pu concentrations of 10(-15) - 10(-8) M produced linear Pu sorption isotherms, demonstrating that Pu sorption to goethite is not concentration-dependent across this concentration range. Equivalent Pu(IV) and Pu(V) sorption Kd values obtained at 1 and 2-week sampling time points indicated that Pu(V) is rapidly reduced to Pu(IV) on the goethite surface. Further, it suggested that Pu surface redox transformations are sufficiently rapid to achieve an equilibrium state within 1 week, regardless of the initial Pu oxidation state. At initial concentrations >10(-8) M, both Pu oxidation states exhibited deviations from linear sorption behavior and less Pu was adsorbed than at lower concentrations. NanoSIMS and HRTEM analysis of samples with initial Pu concentrations of 10(-8) - 10(-6) M indicated that Pu surface and/or bulk precipitation was likely responsible for this deviation. In 10(-6) M Pu(IV) and Pu(V) samples, HRTEM analysis showed the formation of a body centered cubic (bcc) Pu4O7 structure on the goethite surface, confirming that reduction of Pu(V) had occurred on the mineral surface and that epitaxial distortion previously observed for Pu(IV) sorption occurs with Pu(V) as well.


Subject(s)
Oxidation-Reduction , Plutonium/chemistry , Adsorption
3.
Anal Chem ; 88(3): 1496-505, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26703823

ABSTRACT

Nuclear forensic science, or "nuclear forensic", aims to answer questions about nuclear material found outside of regulatory control. In this Feature, we provide a general overview of nuclear forensics, selecting examples of key "nuclear forensic signatures" which have allowed investigators to determine the identity of unknown nuclear material in real investigations.


Subject(s)
Forensic Sciences/methods , Law Enforcement , Radiation Monitoring , Radioactive Waste/analysis , Security Measures , Humans
4.
Microsc Microanal ; 13(3): 156-64, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17490497

ABSTRACT

Environmental sampling (ES) is a powerful technique used by safeguards inspectors of the International Atomic Energy Agency and the European Safeguards Office for the detection of undeclared nuclear activities. Since its implementation in the 1990s, ES has proven to be very sensitive and effective. Considering the consequences, the measurements should be carried out under a quality management programme. At the Institute for Reference Materials and Measurements, a new production method is under development for the preparation of reference uranium particles from well-certified UF6, allowing uranium particles with certified isotopic abundances to be prepared that are representative of those found in uranium enrichment facilities. Using an aerosol deposition chamber designed and built for the purpose, particles are formed by the hydrolysis of UF6 and their morphology and (isotopic) composition measured using SEM-EDX and SIMS. The SEM measurements show that by varying the relative humidity of the air in the reaction chamber, the morphology of the particles can be changed. By making a distribution map of the chemical composition of the particles, the relationship between fluorine and uranium as main constituents of the particle could be established. The presence of fluorine is a valuable indicator for the occurrence of nondeclared enrichment activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...